
UCRL-WEB-200124

EZJOBCONTROL

EZJOBCONTROL - 1

Table of Contents

Preface 3
Introduction 4
Alternatives for Running Programs 5
Job-Scheduling Policy 7

Policy Background 7
How Banks Affect Job Scheduling 8
How Shares Affect Job Scheduling 9

Annotated Typical Batch Script 10
Between-Machine Script Differences 15
Running a Batch (LCRM) Job 17

Overview Chart 17
Step 1: Create Your Script 18
Step 2: Store Files, Make Directories 19
Step 3: Plan Your Job Constraints 20

PLIM, LRMMGR, BRLIM, and SINFO 20
PHSTAT (Production Host Status) 23
BAC 24
BT and RDBSEE (Replaced) 24
PHIST 25
PSHARE 26
Constraint Summary 27

Step 4: Submit Your Job 28
Crucial PSUB Options 30
Helpful PSUB Options 31
Parallel PSUB Options 34
Misleading PSUB Options 39
PSUB Examples 40
Environment Variables and Job Submittal 41

Step 5a: Monitor Your Job 42
Step 5b: Alter Job Features 45
Step 5c: Delete Problem Jobs 46
Step 6: Check Your Log File 46

When Things Go Wrong 47
Disclaimer 50
Keyword Index 51
Alphabetical List of Keywords 53
Date and Revisions 54

EZJOBCONTROL - 2

Preface

Scope: EZJOBCONTROL supplements reference material on the LC batch system by
introducing and comparing the basic issues, tools, techniques, and alternatives for job
planning and execution on LC machines, including the LCRM (formerly DPCS)
batch-processing system. EZJOBCONTROL aims to help you build, run, and monitor
(batch) jobs more effectively, while the LCRM (DPCS) Reference Manual (URL:
http://www.llnl.gov/LCdocs/dpcs) aims to reveal and explain LC's across-machine
scheduling and job-control (metabatch) system and the Bank and Allocation Manual
(URL: http://www.llnl.gov/LCdocs/banks) explains LC's time management policies.
The reference manuals take the comprehensive, system perspective while
EZJOBCONTROL takes the task-oriented, user perspective to job management topics,
tools, and common batch-job problems.

Availability: When the programs described here are limited by machine, those limits are included
in their explanation. Otherwise, they run under any LC UNIX system.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

 OCF: http://www.llnl.gov/LCdocs/ezjob/ezjob.pdf
 SCF: http://www.llnl.gov/LCdocs/ezjob/ezjob_scf.pdf

EZJOBCONTROL - 3

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/ezjob/ezjob.pdf

Introduction
EZJOBCONTROL introduces the alternative ways to run programs and manage jobs on the LC

machines, and it explains the basic features of the local batch system, called the Livermore Computing
Resource Management (LCRM) system (but long known by its former name of Distributed Production
Control System (DPCS)). This is a start-quickly user guide, not a comprehensive reference manual (which
is a separate document (URL: http://www.llnl.gov/LCdocs/dpcs)).

This guide summarizes the LCRM job-scheduling policies and algorithms. It includes a typical batch
script thoroughly annotated to explain the role of each feature, as well as a list of script features that support
special environments (such as IBM's POE (URL: http://www.llnl.gov/LCdocs/poe)) or that will not transfer
between different LC machines. Step-by-step instructions show how to plan, run, monitor, and change the
specifications of a typical batch job successfully. Also included is a discussion of how several common
mistakes are handled by LCRM or the operating system.

Scheduling.
LC uses a very dynamic "fair-share" approach to political (competitive) scheduling of jobs, instead of a
more traditional job-scheduling approach based only on job features and fixed computer-time allocations.
EZJOBCONTROL introduces the general software tools that monitor and manage your computing "shares,"
and it suggests plausible ways to plan your job and handle its constraints in light of this fair-share scheduling.
If you are one of the few LC users authorized to manage resource banks (page 8), consult the Bank and
Allocation Manual (URL: http://www.llnl.gov/LCdocs/banks) for details on extra bank-management and
resource-montitoring tools and for specific instructions on how to change user assignments and time
allocations. LCRM completely eliminated the former "account" attribute of batch jobs in August, 2005.

Resource Management.
Starting in 2003, the former DPCS began changing its official name to the Livermore Computing Resource
Management (LCRM) system. This change chiefly affects internal files, features, and libraries, however.
The job-control user utilities (discussed here) and most user messages from LCRM/DPCS remain unchanged.
Also starting in 2003, LC began deploying on all of its production Linux (CHAOS) machines a locally
designed, low-level resource manager to work "below" LCRM/DPCS (from a user's viewpoint) to more
efficiently handle nodes and tasks for large parallel jobs. See the SLURM Reference Manual (URL:
http://www.llnl.gov/LCdocs/slurm) for details on what this low-level system contributes to within-machine
job control and resource allocation in the LC Linux environment.

Moab Role.
Starting in March, 2007, LC began gradually replacing LCRM (DPCS) with a commercial product called
"Moab Workload Manager" (MWM, or simply Moab) from Cluster Resources, Inc. To implement this
replacement, LC automatically translates some LCRM features and tool options into Moab counterparts,
but it modifies or abandons others. EZJOBCONTROL now mentions specific cases of this LCRM-to-Moab
replacement throughout the text. For a more comprehensive look at Moab's impact on LC production
computing, however, see Moab at LC (URL: http://www.llnl.gov/LCdocs/moab).

EZJOBCONTROL - 4

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/poe
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/moab

Alternatives for Running Programs
There are many alternative ways to execute a job on LC machines:

 Interactively
 In the foreground (default)
 In the background (& suffix)
 Ending at logout (default)
 Continuing after logout (NOHUP)

 Using local Linux (CHAOS) batch queues (via SRUN)

 Using across-machine batch scheduling (via LCRM or Moab)
 Without terminal access (default)
 With terminal access via RUN/PROXY

Interactive Jobs.
In general, all LC production machines limit interactive jobs to no more than 30 CPU minutes/process and
no more than 1/10 the physical memory of the machine where they run. (If you interactively execute one
script that invokes several processes, each separate process is allowed 30 CPU minutes. However, if several
processes associated with the same "job" script really consume as much as 30 min each, the LC User
Services staff will detect this and contact you to urge using batch execution instead in the future.)

Batch Jobs.
Details may vary, but the goal of such interactive limits is always to encourage you to run jobs that are
long, large, or both in the batch system, for which the "Livermore Computing Resource Management"
system (LCRM, formerly DPCS) provides the controlling utilities at LC. (Sometimes, LC temporarily
allows long interactive runs on a new machine if LCRM is not yet installed there.) Because batch jobs call
for extra preparation and planning, while offering you in exchange much more size and scope flexibility,
most sections in this guide discuss job control from the batch perspective.

As Moab gradually replaces LCRM on LC production machines, this strategy for managing batch jobs
(and even the familiar job-scheduling priorities) remains unchanged, but some new tools and tool options
take the place of traditional LCRM job-control utilities (they are noted below in appropriate places in the
text).

On LC's Linux (CHAOS) machines, the SRUN utility (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2) can either launch your job from within an
LCRM-managed script for across-machine scheduling and accounting, or else manage your job's resources
in a "local (one-machine) batch" mode even when LCRM is unavailable (see the SLURM Reference Manual
(URL: http://www.llnl.gov/LCdocs/slurm) for examples).

The next section compares interactive and batch jobs in terms of LC's job-scheduling policy. The last
section (page 47) in this guide returns to this comparison again, in terms of job problems and
troubleshooting.

EZJOBCONTROL - 5

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2
http://www.llnl.gov/LCdocs/slurm

Access to LCRM Utilities.
Later sections of this guide introduce and explain the user utility programs (PSUB, PSTAT, PALTER, and
others) by which you interact with LC's batch system (to submit and track your jobs). For efficiency, LC
now makes these LCRM software tools available only on:
(1) the few nodes of each cluster designated as interactive login nodes, and
(2) the single node on which any single-node job executes, and
(3) the master node (but not the other nodes) on which a multiple-node job executes.

Access to Job Nodes.
Besides a few designated login nodes on every LC cluster, users running a batch job are also allowed to
log in to any compute node on which that job executes, usually to run additional monitoring or job-guiding
interactive processes.
(1) Remember that the LCRM utilities may not be available on compute nodes, as noted above.
(2) Such access to a job's compute nodes is only allowed (on SLURM-managed machines) after the job's
first execution of POE or MPIRUN (which sometimes causes a noticeable delay in login access).
(3) Starting in August, 2007, on LC Linux (but not AIX) clusters where SLURM is the resource manager
underlying LCRM or Moab, all of a user's processes on any compute node will terminate whenever a
SLURM-managed batch job completes on that node. This guarantees that the next user's job will see no
interference from stray, CPU-intensive processes that accompanied your job. If your login session or
interactive process on a Linux compute node unexpectedly ends, your batch job to which that node was
allocated has probably just completed.

EZJOBCONTROL - 6

Job-Scheduling Policy

Policy Background
For job-scheduling and resource-assignment purposes, the difference between interactive and batch

jobs at LC is much less than at many other UNIX sites. For example, on LC machines there is

• no difference in NICE (run priority) value between foreground and background jobs,

• no NICE-control option for the PSUB batch-submittal utility at all, and

• no overt job-scheduling queue structure differentiated by explicit NICE values (and hence by relative
delivery rates of time to jobs) or memory limits.

Instead, resource managers can specify maximum values on CPU time or memory usage for interactive
and for batch jobs alike (for example, some YANA nodes run no batch jobs, some run 12-hour batch jobs,
and some run 200-hour jobs). Whole machines can be tuned to favor interactive sessions or else batch
production runs, a very coarse-grained and nonexclusive way to sort jobs by type. For each separate machine
on which LCRM schedules jobs, the system checks submitted jobs every 20 sec to detect jobs precluded
from running next (usually because of constraints like those just mentioned). Then it picks the best candidate
to run next (from the remaining candidate job pool), using a complex scheduling algorithm described in
the LCRM (DPCS) Reference Manual (URL: http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.5.2).

"Scheduling" is itself ambiguous, and has at least three meanings at LC:

• LOAD BALANCING--dividing jobs among available machines or processors efficiently. SLURM,
for example, can invoke any of three different schedulers (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s3.4) to spread jobs among compute nodes in
different ways.

• GANG SCHEDULING--grouping the related, coordinated tasks of a parallel program so they can
all get processors at the same time and can time-share those processors with other jobs effectively.
Currently at LC, you must overtly (prepare for and) request gang scheduling of parallel jobs, using
techniques explained in the Gang Scheduler User Guide. (URL: http://www.llnl.gov/LCdocs/gang)

• POLITICAL SCHEDULING--spreading compute resources "properly" among users or groups of
users. In fact, allocating CPU time to users and deciding when their jobs will run, which are
conceptually distinct problems, merge entirely at LC under the "fair-share scheduling" approach now
used on all open and secure production machines.

The dominant political scheduling mechanism at LC is not placement of individual jobs in explicit, ranked
job queues. Instead, scheduling is driven chiefly by (1) the implicit relationship of a job's "bank" to other
banks, and (2) the "shares" and past usage profile of the job's owner (relative to other owners). The next
two sections explain these indirect but important scheduling factors.

EZJOBCONTROL - 7

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.5.2
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s3.4
http://www.llnl.gov/LCdocs/gang

How Banks Affect Job Scheduling
At LC a bank, which was formerly a pool of CPU time, is now a pool of compute "shares" or unitless

entitlements to use computing resources. (LCRM completely eliminated the former "account" attribute of
batch jobs in August, 2005.) Every user and every job are associated with some specific bank (by default
or choice), and that bank's influence is extensive:

Hierarchy The parent-child or the sibling relationships among banks influence how the jobs
funded from those banks are scheduled:

• Built into LC's formula for "normalizing" compute shares and usage (so they
can be compared among users) is an overt multiplicative "parent factor" that
scales the result in proportion to your subbank's fraction of its parent bank's
shares.

• Normalization applies recrusively through the hierarchy of ALL banks. So all
parents of the bank associated with your job always affect the current normalized
value of your shares, and thereby your job's fair-share priority.

Resource Sharing

To allow ad hoc adjustments to the general allocation (and hence scheduling) "flow"
described above, any specific bank can be...

• Declared a resource-sharing bank, enabling shares to flow to its children (and
to the jobs they fund), or

• Excluded from resource sharing even if its sibling banks do share their parent's
shares.

Special Cases With special prior authorization (only), users can declare individual jobs as either
"exempted" or "expedited," which schedules that job more quickly by ignoring some
or all of the foregoing scheduling algorithms. There are significant limitations on
doing this, however, as explained in the "Plan Your Job Constraints" (page 20) section
below and in the "Expediting and Exempting Jobs" section of the LCRM (DPCS)
Reference Manual (URL: http://www.llnl.gov/LCdocs/dpcs).

Resource Quotas

Resource managers can superimpose on this whole scheme time "quotas" for specified
periods (daily, weekly, etc.) such that any bank that exceeds its quota for a period (or
that has a parent bank that exceeds the parent quota) will stop funding jobs until the
next quota period begins. Note that starting in February, 2006, the former distinction
between batch (LCRM-only) and interactive banks ended, so that all banks now serve
both batch and interactive jobs.

EZJOBCONTROL - 8

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/dpcs

How Shares Affect Job Scheduling
The fair-share priority of every job you own (in the same LCRM partition) is the same, regardless of

the job's detailed features. At LC, this fair-share priority reflects almost entirely just the DIFFERENCE
between

• your normalized shares (how entitled you are to compute), and

• your normalized usage, where usage has an historical component that takes account of your recent
computing activity level over time.

How these two values (normalized shares and usage) are calculated before subtracting the second from
the first defies simple description, however. To appreciate the intricacy of the calculation and the degree
of indirection involved requires a look at the LC fair-share algorithms, to which a full section in the LCRM
(DPCS) Reference Manual (URL: http://www.llnl.gov/LCdocs/dpcs) is devoted. (A term added to the
fair-share algorithm in January, 2001, allows the RATIO of normalized shares to normalized usage to
influence, or even dominate, the difference term. The weight of this ratio term is initially set to 0, however.)

In practice, you can simply monitor the current results of these (often changing) fair-share calculations
by running the PSHARE (page 26) utility, using the options suggested in a later section. PSHARE reports
the current normalized shares, normalized usage, and (optionally) resulting job priority for yourself, your
competing users, and your bank and its parents. These values may (or may not) help you predict how any
job of yours will compete for resources against jobs owned by other users when LCRM tries to schedule
them. (Authorized managers only can force a job's priority to a specified value by using the privileged -p
option of the PALTER (page 45) utility.) Also, starting in February, 2006, a "full report" on a batch job
using PSTAT's -f option includes the current value of a field called "resources used," but which is actually
the job's fair-share "aggregate resource units" (AGUs). This is LCRM's fair-share usage estimate, and it
allows you to compare the usage of different jobs run in different circumstances.

On LC production machines where Moab has replaced LCRM as the across-cluster batch-job scheduler

mdiag -f

has replaced PSHARE as the tool for reporting detailed share-like usage information.

EZJOBCONTROL - 9

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/dpcs

Annotated Typical Batch Script
This section contains a simple but typical C-shell script designed to execute typical tasks successfully

on LC computers (such as Thunder or UP). Just below each script line is an explanation of its role. These
comments introduce batch system default behavior for a variety of circumstances, and then explain how
the script modifies that behavior (often) to yield more convenient or more reliable results.

Not every job-control script needs every feature shown here, but omitting features without understanding
their role may prevent your batch job from running successfully. Also, the features shown here work well
across all LC machines. Other helpful features that are limited to specific types of machines are listed and
explained in the next section (page 15), where their discrepant behavior is pointed out so you can plan
carefully if you choose to use them.

The maximum length of an LCRM job name (and hence a script name) is 15 characters, while the
maximum user name is 31 characters.

When LCRM accepts your submitted job (by returning a job id number) it copies your script (into a
"spool" area). Changes you make to your copy after this point will NOT affect how the (original spooled)
script executes. So the time to correct flaws in your script is before you submit it to LCRM, not afterward.

(The purpose of this sample script is actually to read a file from storage, process it with the UNIX
SPELL utility, and then save the resulting output file in storage, to illustrate a fairly common pattern of
job steps.)

SCRIPT LINE EXPLANATORY COMMENTS

Imbedded PSUB options must:

• begin with the string #PSUB in uppercase.

• come before any other script commands except for the choice of shell.

#!/bin/csh DEFAULT: The default shell may vary between machines and users (but it is often
the Bourne shell sh).
SUGGESTION: At the very start of your script, use the unique syntax shown here to
explicitly declare which shell your job should run under (here, the C shell csh).
WARNING: LCRM accepts exactly four shells--sh, csh, ksh, and perl.

#PSUB -eo DEFAULT: Error messages and log messages go to separate files (called by default
input.ejid and input.ojid, if your batch script is called input and jid is your numerical
job ID).
SUGGESTION: Use PSUB's -eo option to collect all output messages in one file for
easier analysis. (See also SET ECHO below.)

#PSUB -o /g/g16/jfk/mylogs/mylog1

DEFAULT: By default the batch system deposits your log file in the online (not
storage) directory from which you submitted the job, which is NOT necessarily helpful
later when you want to find it.

EZJOBCONTROL - 10

SUGGESTION: To reliably deposit the log file where you want with a name that you
recognize, use PSUB's -o option to specify the absolute pathname for the log file (all
directories used here must exist before you run your job, so using an already created
child of your common home directory (/g/g16/jfk/mylogs in the example) is a good
strategy on any production machine). See also -ro below.

#PSUB -nr DEFAULT: By default the batch system tries to rerun from the start any running job
whenever a checkpoint restart fails.
SUGGESTION: You must overtly request -nr (no rerun) if you want it, as is done
here, to avoid the likely waste of resources.

#PSUB -ro DEFAULT: By default the batch system automatically holds your job's standard
output (error and log messages) in a spool file until your job ends, where it could be
lost.
SUGGESTION: You must overtly request -ro (write standard output directly to your
specified output file), as is done here.
WARNING: Before you submit your batch script to LCRM you must previously
create (with MKDIR) every directory and subdirectory needed to support your standard
output file(s). Failure to create these directories in advance causes your job to die as
soon as LCRM encounters your PSUB -ro option (you cannot have the job create its
own error/log directories because the imbedded PSUB -ro option must come BEFORE,
not after, all your ordinary script commands).
A common mistake when using -ro is to create needed error/log directories on only
one node in a cluster, but in a file system such as /usr/tmp that is local to each node.
If you then manyow the job to run on several (or many) nodes in the cluster and if
LCRM pick some for execution that lack the needed directories, your job dies almost
immediately (as soon as -ro is encountered). To avoid this problem when you run in
any massively parallel environment at LC, create the needed error/log directories in
your common home directory (e.g., such as /g/g16/jfk/mylogs), which is automatically
available to every machine node. (You could also restrict the job to run only on one
or more specific nodes in a cluster by using PSUB's -c option (page 31).)

#PSUB -tM mm

DEFAULT: PSUB's -lt option specifies a per-process time limit (in minutes), while
option -tM (shown here) specifies a total maximum time limit without imposing time
constraints on individual processes within the job.
SUGGESTION: Use either -lt or -tM (or both if you wish) to impose the kind of time
limit that best suits your job. Use the format hh:mm to specify hours instead of just
minutes (so for 2.5 hours use either -tM 150 or -tM 2:30). A separate -tW option limits
wall-clock time.
WARNING: The default total-job time limit for batch jobs on LC machines (if you
omit -tM) is only 30 minutes. Jobs that exceed their total time limit are killed. To
change a mistaken time limit (with the PALTER utility) after you have already
submitted your job, see the "Alter Job Features" (page 45) section below.

EZJOBCONTROL - 11

#job commands start here

Aside from PSUB imbedded options, all lines that begin with # are just comments
(like this one).

set echo DEFAULT: On LC machines, no executed commands are automatically echoed in
your log file.
SUGGESTION: You must overtly request command echoing if you want it, as is
done here, for easier debugging. Strangely, echoed commands appear in your error
file unless you use the -eo option (explained above) to combine your error and output
files.

echo LCRM job id = $PSUB_JOBID

DEFAULT: The PSTAT monitoring utility reports only on waiting or running jobs,
unless with -T you already know the job's job ID. So you will not be able to discover
the job ID of a completed job once it ends, a debugging obstacle if you run several
jobs.
SUGGESTION: Include this request to echo into your log file the value of the LCRM
environment variable PSUB_JOBID (all uppercase) at the start of every job. The
output will be the 5-digit number that uniquely identified your job to LCRM while it
ran. (LCRM does include your job ID in all its e-mail to you.)

mkdir -p /var/tmp/jfk/myruns
cd /var/tmp/jfk/myruns

DEFAULT: All batch jobs start executing in your login directory.
SUGGESTION: Immediately make (MKDIR) a work directory for each job (here
/jfk/myruns, a child of standard temp directory /var/tmp) and move (CD) into it. This
shelters your job from others and improves run efficiency. Having your job create its
own work directory guarantees that the directory will be present regardless of which
node runs the job. Using MKDIR's -p option lets you create several directory layers
at once, and also avoids an error message if the work directory already exists (from
a previous run). Your system administrator MAY have specified a dedicated temporary
directory automatically created when your job starts and automatically purged when
your job ends. In general, environment variable PCS_TMPDIR contains the location
of that directory in case you want to use it, but on LC IBM machines an even better
approach is to use LOADL_STEP_ID as explained below in the "Script Differences"
section (page 15). (Using a globally mounted /nfs/tmpn directory instead of the local
/var/tmp will let you access your output from any production node.)

EZJOBCONTROL - 12

ftp storage <<EOF
jfk
cd testdir
get test001
quit
EOF

DEFAULT: Files left online may be purged or otherwise lost before your batch job
that needs them starts to run.
SUGGESTION: Retrieve all needed data (here, TEST001) or private executable files
from storage at the start of your job (here using passwordless FTP by file owner JFK
and retrieving TEST001 from storage directory TESTDIR). To be sure that retrieved
executables (or scripts created as your job runs) will execute, (re)confirm their
executable status by running

chmod u+x progname

/usr/bin/spell test001 >! sp.out

DEFAULT: Your current (batch) directory may not be in your search path (or public
files with conflicting names may precede it).
SUGGESTIONS:
(1) To run programs not local to your work subdirectory, use their absolute pathnames
(as shown here).
(2) To run any local program or script with the same name as any public file in any
search-path directory, overtly use its relative pathname, for example

./spell
(3) Whenever you redirect output to a disk file, always redirect WITH OVERWRITE
(e.g., use >! rather than just > in the C shell). Otherwise, leftover previous versions
of output files could prevent rerunning your job successfully after a first attempt.

ftp storage <<EOF
jfk
cd outdir
put sp.out
quit
EOF

DEFAULT: No work (batch output) files are stored or backed up automatically, and
they can be purged, even from /nfs/tmpn global work directories.
SUGGESTION: To avoid losing your batch output during a file purge or disk crash,
place all important output files (here illustrated by SP.OUT) in archival storage before
ending your batch job (here, using passwordless FTP to storage directory OUTDIR
of job owner JFK).

EZJOBCONTROL - 13

rm test001 DEFAULT: The batch system does not automatically clean up temporary files, or
any files, after a batch job ends. (Days later, a general file-system purge may eventually
delete left-over files from /var/tmp.)
SUGGESTION: Remove all large or temporary files left by your job (here TEST001),
to help conserve system resouces. Of course, if your job terminates abnormally this
final clean-up step may never execute, leaving many files behind anyway. So to avoid
filling the heavily used /var/tmp file system on LC IBM machines, run jobs on those
machines in a special subdirectory that the batch system empties whenever and
however your job ends (see the "Script Differences" section (page 15) below for
details).

EZJOBCONTROL - 14

Between-Machine Script Differences
Some useful batch script features are limited by platform or vendor. The list below describes these

useful but nonportable features, as supplements to the portable features in the annotated script in the
previous section (page 10). Platform or vendor limitations are noted for each. (For additional PSUB options,
some misleading and some compensatory, see the "Submit Your Job" (page 28) section below.) See also
the warnings about using "large memory pages" on some LC AIX systems, and about "CPU affinity"
performance issues on LC machines that have NUMA hardware, below (page 20). Also, not all environment
variables are available on all platforms (see LC's Environment Variables (URL:
http://www.llnl.gov/LCdocs/ev) manual for noteworthy local differences).

#PSUB -re DEFAULT: The batch system automatically holds your error messages in a spool file
until your job ends, where they could be lost.
SUGGESTION: You must overtly request -re (write errors directly to your error file)
if you want it, as shown here.
WARNING: On LC machines, -re and -eo are considered conflicting PSUB options,
so you must omit -re to use -eo (i.e., to consolidate error and log messages in one
file). But if you chose not to combine your error and log files (-eo), then you should
use -re to force error messages directly into your error file for safety.

#PSUB -c constraint

DEFAULT: The -c option specifies extra machine-level constraints on how your
batch job runs. While -c itself is available on all LC machines, different constraints
(-c arguments) are permitted on different machines.
SUGGESTIONS: (1) Before using -c, consult both the "Plan Your Job Constraints"
(page 20) and the "Submit Your Job" (page 28) sections below, so that you use only
appropriate constraints and avoid unsupported ones on your target machine.
(2) Do not confuse machine-level constraints (specified with -c) and node-pool
constraints (specified only with -pool). For example, you can limit your job to LC's
Thunder machine by using -c thunder, but you can limit it to the pdebug node pool
only by (also) using -pool pdebug.

set timestamp DEFAULT: The batch system does NOT automatically record the time at which each
command in your job executes.
SUGGESTION: You must overtly request time stamping if you want it, as shown
here.

setenv varname varvalue

DEFAULT: On LC AIX machines, many Parallel Operating Environment (POE)
environment variables are set by default or ignored by default to support MPI
(between-process parallelization). See the "Local Defaults" section of the POE User
Guide (URL: http://www.llnl.gov/LCdocs/poe) for a list.
SUGGESTION: If you want to change the MPI defaults, or if your program uses
POSIX threads (for within-process parallelization) and you need to set IBM/AIX
threads-relevant environment variables (such as setenv AIXTHREAD_MNRATIO

EZJOBCONTROL - 15

http://www.llnl.gov/LCdocs/ev
http://www.llnl.gov/LCdocs/poe
http://www.llnl.gov/LCdocs/poe

4:1), include those commands in your batch script BEFORE you execute your main
program, so that your preferred environment variable values will be available for
program initialization. See the POE User Guide (URL:
http://www.llnl.gov/LCdocs/poe) for possibilities.
WARNING: On BlueGene/L only, environment variables set in this standard way
will not be visible to application programs launched using MPIRUN. To set
environment variables for BG/L MPIRUN-executed programs, use the quoted,
blank-delimited argument to MPIRUN's own -env option. For example:
mpirun -env "BGLMPI_ALLREDUCE=MPICH
BGL_APP_L1_WRITE_THROUGH=1" ...

cd /var/tmp/$LOADL_STEP_ID

DEFAULT: The batch system usually does not clean up (destroy) any files left by
your job when it ends, even if it ends abnormally. This sometimes completely fills
/var/tmp, especially on the heavily used IBM machines.
STRATEGY: On LC IBM AIX machines only, LoadLeveler sets the environment
variable LOADL_STEP_ID when it starts your batch job. The LC batch system
(LCRM) "prolog script" then automatically creates a unique subdirectory for your
job called /var/tmp/$LOADL_STEP_ID. If you CD into that special directory (as
shown here) before executing the other steps in your batch job, then the batch system
will automatically destroy all files left in that subdirectory when your job terminates,
even if it terminates prematurely. This benefits all IBM users by greatly reducing the
chance that /var/tmp on the IBM nodes will fill completely with orphaned job files.
(Of course, you must promptly write to archival storage any job files that you really
want to save, or they will also vanish with the special subdirectory if the job ends
abnormally.)
WARNING: LC AIX machines that use SLURM instead of LoadLeveler do not
support this feature.

grep NETWORK /etc/home.config

DEFAULT: Your job may need to behave differently in the OCF and SCF
environments, but not be able to tell them apart.
SUGGESTION: One line in the system file /etc/home.config on every LC machine
contains the keyword "NETWORK" (uppercase) and the (lowercase) value "ocf" or
"scf" to always reveal your job's current network context. GREPing home.config, as
shown here, returns the content of that line.

EZJOBCONTROL - 16

http://www.llnl.gov/LCdocs/poe

Running a Batch (LCRM) Job

Overview Chart
This chart summarizes the steps needed on LC machines to prepare, submit, run, monitor, and evaluate

a batch (LCRM or Moab) job. Each section following the chart futher explains and illustrates one of the
steps shown here.

 | Create your |
 | script |

 |

 | Store input files, |
 | make output directories |

 |

 | Plan job |
 | constraints |
 | (PLIM, etc) |

 |

 | Submit your |
 | job (PSUB) |

 |
 --
 | | |
------------------ ----------------- ---------------
What is job's		How can you		How can you
status, id?		alter the job		delete your
(PSTAT)		features?		job?
		(PALTER)		(PRM)
------------------ ----------------- ---------------
 | | |
 --
 |

 | Check your |
 | log file |

 |

 | Check your |
 | output file |

EZJOBCONTROL - 17

Step 1: Create Your Script
Every use of the LCRM batch system begins with your running a text editor to make a shell script that

specifies how your batch job will be handled (mostly by imbedded instructions to the PSUB utility) and
exactly what programs to run (mostly using lines like you would type to run them yourself). For instance,
the sample batch script shown here lays some groundwork, processes an input file with the UNIX SPELL
program, and stores the output. This trivial project nevertheless typifies the features of most batch jobs,
and you can see a detailed explanation for the role of each line here by consulting the Annotated Batch
Script (page 10) section above. And Between-Machine Differences (page 15) warns about some known
script portability pitfalls.

#!/bin/csh
#PSUB -eo
#PSUB -o /g/g16/jfk/mylogs/mylog1
#PSUB -nr
#PSUB -ro
#PSUB -tM 40
#job commands start here
set echo
echo LCRM job id = $PSUB_JOBID
mkdir -p /nfs/tmp1/jfk/myruns
cd /nfs/tmp1/jfk/myruns
ftp storage <<EOF
jfk
cd testdir
get test001
quit
EOF
/usr/bin/spell test001 >! sp.out
ftp storage <<EOF
jfk
cd outdir
put sp.out
quit
EOF
rm test001

After you design your batch script but BEFORE you submit it you need to prepare for your batch job
in other ways (next section).

WARNING: the name of your batch-job script cannot contain a percent (%) character. PSUB rejects
at submittal any job script whose name includes a percent character.

EZJOBCONTROL - 18

Step 2: Store Files, Make Directories
STORE YOUR INPUT FILES.

Most batch jobs, just like the little sample in the previous section, require data files as input while they
run. Store such files in LC's archival storage system (storage.llnl.gov, called "storage" for short) before
you submit your batch job. Because these input files are often large (and sometimes numerous), leaving
them on disk makes them vulnerable to file purges or disk crashes that could prevent your job from getting
them when needed.

Then, when your job runs, have your script retrieve your data files from storage as an early step. You
can use passwordless FTP as an interface to the storage system, as shown in the foregoing script, or, for
more reliability, you can use NFT (on LC production machines). For a comparative overview of basic,
relevant FTP and NFT commands, see the EZOUTPUT File-Transfer Guide (URL:
http://www.llnl.gov/LCdocs/ezoutput). For technical details on the storage-support features of NFT, consult
the NFT Reference Manual (URL: http://www.llnl.gov/LCdocs/nft).

MAKE NEEDED DIRECTORIES.
Before you submit your batch script to LCRM you must plan to provide every directory and subdirectory
needed to support your output file(s).

(1) Your error/log file(s) can go into a child directory of your common home (/g) directory, which is
automatically shared among all nodes of all LC production machines. You should make this directory (e.g.,
/g/g16/jfk/mylogs) before you even submit your job. (A common mistake when using PSUB -ro (page 10)
is to create error/log directories on only one node in a cluster, but in a file system such as /var/tmp that is
local to each node. If you then allow the job to run on several (or all) nodes in the cluster and if LCRM
picks one for execution that lacks the needed directories, your job dies almost immediately (as soon as -ro
is encountered). Using a child of your common home directory for error/log output avoids this problem.)

(2) Running each batch job in a separate work subdirectory is good practice, free from the constraints
on your home directory and sheltered from your other computing activities. To do this, create (MKDIR)
the job subdirectory and move (CD) into it as the very first steps within your job's script. For example:

mkdir -p /nfs/tmp1/jfk/myruns

cd /nfs/tmp1/jfk/myruns

Note that on LC clusters with diskless compute nodes (such as the Atlas family of Linux/CHAOS machines),
/var/tmp uses RAM on each node and to conserve memory CHAOS purges /var/tmp between all jobs. So
using GPFS or Lustre, /nfs/tmp*, or archival storage is a much better choice for output. See the Annotated
Batch Script (page 10) section above for more details.

EZJOBCONTROL - 19

http://www.llnl.gov/LCdocs/ezoutput
http://www.llnl.gov/LCdocs/nft

Step 3: Plan Your Job Constraints
Before you submit your batch job, take account of the by-machine or by-bank resource constraints as

well as the batch-system scheduling limitations that it will face and plan your submittal parameters to avoid
trouble with those constraints. You can run the utility programs described in this section to get up-to-date
reports on many of your job's diverse current constraints.

MACHINE IDIOSYNCRACIES.
(1) For example, on LC's UM, UV, UP, and Purple machines (all AIX clusters), most node memory is
bundled in "large memory pages" but you must overtly enable your executables running there to use those
large memory pages at the start of your job or receive a warning message for every task (see the "Enabling
Large-Memory Pages" section (URL: http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.5) of the POE
User Guide for details).
(2) On LC Linux/CHAOS clusters that have CPUs with "nonuniform memory access" (called NUMA
hardware), application performance may vary greatly depending on whether or not processes are bound
to the CPU where they start to run (CPU afffinity) and whether or not memory allocation is local to each
NUMA node. See the "For Users of NUMA Nodes" section (URL:
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2) of the CHAOS reference manual for background
on this issue and tools to help you manage it.

LCRM DOMAIN SCOPE.
LCRM divides SCF (secure-network) machines into two "domains." Users running PSUB on a machine
in one domain cannot submit jobs to or monitor jobs on machines in the other domain (no domain crossover).
See Step 4 (page 28) below for details.

ENVIRONMENT VARIABLES.
LCRM automatically passes to your job some environment-variable values that it captured on the machine
where you submit the job, and it automatically sets some other environment variables in the job's execution
environment. You may want or need to pass additional values to the job by invoking PSUB's -x option
(page 31). For a thorough, comparative discussion see the long "Batch-Job Environment Variables" section
(URL: http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4) of LC's Environment Variables user manual.
On BlueGene/L, you must use MPIRUN's own -env option to pass environment variable values to any
application executed with MPIRUN. On LC machines where Moab has replaced LCRM for batch-job
scheduling, environment variable handling depends on whether you submit your job using the PSUB
emulator or the native MSUB tool. See the "Environment Variables" section (URL:
http://www.llnl.gov/LCdocs/moab/index.jsp?show=2.3) of the Moab at LC user guide for details.

PLIM, LRMMGR, BRLIM, and SINFO

PLIM.
The PLIM utility, run with no options on machines using LCRM, reports the current value of nine
seldom-changed system default limits that your job faces, including

• the maximum run (wall-clock) time for batch jobs,

• the maximum allowed job size (Mb),

• the default time limit your job gets if you do not specify one,

EZJOBCONTROL - 20

http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.5
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4
http://www.llnl.gov/LCdocs/moab/index.jsp?show=2.3

• the maximum allowable nodes and node hours for running a parallel batch job.

All times are unlabeled, but all have the form hh:mm (not mm:ss, so 0:30 is 30 minutes).

WARNING: if you run PLIM on a machine in a cluster (such as an open or secure Linux cluster), and
if the job limits vary among nodes in the cluster, then PLIM's default report may not reflect the actual
limits on nodes relevant to your job. To get an accurate limit list for a specific clustered node (host), use
PLIM's (undocumented) -m option, as shown here:

plim -m host

(for example, plim -m yana25). On LC machines using Moab instead of LCRM to schedule batch jobs,
PLIM has been replaced by

news job.lim.host

to report similar limit information.

LRMMGR.
An even longer labeled list of (seldom-changed) batch-system configuration limits that could affect your
job (such as the maximum number of active jobs allowed per user or per local machine) is available by
running LRMMGR (formerly called PCSMGR). LRMMGR (available on LCRM-scheduled machines
only) reports almost three dozen limits, not all of which overlap with those PLIM reports and not all of
which are highly relevant to typical jobs. But since hitting an unknown limit is a common reason for
batch-job failure, this long limit list may help you troubleshoot problems.

Using LRMMGR calls for some patience. Start by typing LRMMGR and then respond to its interactive
prompt (lrmmgr>) with one of these commands (note that if you pause for more than about a minute,
LRMMGR warns you about inactivity and terminates itself if no input follows within 30 seconds):

help show lists all available suboptions for the SHOW command, but without any explanation
of their role.

show config * lists the (several dozen) names for every job-control configuration set that LRMMGR
is prepared to report. You can use any of these as suboptions for the SHOW command
(next).

show hostname_config

reports a table of the current settings on the machine hostname for 25 LCRM
configurable features, such as cpu time limit, maximum number of running jobs/user,
maximum process size, and maximum and minimum nodes/job. System administrators
can change these limits, but after February, 2006, such changes never affect already
running jobs.

show thunder_config

is an example of using a specific configuration name to get a table
of current settings for the specific cluster named (here, THUNDER).

EZJOBCONTROL - 21

show default_config

shows the current default settings for the machine where you are
running LRMMGR (which may not be the machine where you intend
to run your job). LCRM managers set these defaults by using
LRMMGR to specify the attributes of a pseudo-configuration named
TEMPLATE (all lowercase).

show feature *

lists the "features" (such as pdebug or pbatch node partitions) that you can use in the
PSUB -c command to impose constraints on where and when your job will run.

show host hostname

lists the properties of the machine hostname, some of which are relevant to the way
it runs batch jobs (included are the machine name, IP address, total number of CPUs).

For your convenience on all LC production machines that use LCRM, a text file that summarizes (some
of) the LRMMGR output is available (in a nonstandardized format) at

/usr/local/doc/job.limits

Or you can see a tabulated, comparative version of (some of) the LRMMGR output for all OCF production
machines at this (OTP-controlled) web site:

https://lc.llnl.gov/computing/status/limits.html

On LC machines where Moab has replaced LCRM to schedule batch jobs, LRMMGR no longer runs.
You can get similar information by executing

mdiag -t

BRLIM.
Besides the local limits reported with PLIM and LRMMGR, you might encounter global limits (on jobs/user
or jobs/bank) that span entire batch partitions. To see if any partition-wide limits exist where you plan to
run your jobs, use the BRLIM utility (on LCRM-scheduled machines only), whose (tricky) options are
explained in the Bank and Allocation Manual (URL: http://www.llnl.gov/LCdocs/banks). BRLIM does
not run on nor report on machines whose jobs are scheduled by Moab, and Moab does not enforce BRLIM's
global limits on resources.

SINFO.
On LC's Linux (CHAOS) clusters, open and secure, a SLURM utility called SINFO helpfully reports on
the current status of the local compute nodes (availability, time limits, allocation state). SINFO's default
report covers only general properties and broad node partitions. But you can invoke many customizing
options (URL: http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.4), as explained in the SLURM
Reference Manual, to report on specific properties (such as disk space) of specific (sets of) nodes if this
will help plan your job submittal.

EZJOBCONTROL - 22

https://lc.llnl.gov/computing/status/limits.html
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.4
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.4

PHSTAT (Production Host Status)

The tools described in the previous section (page 20) all reveal relatively stable, seldom-changed local
limits (PLIM and LRMMGR), global partition limits (BRLIM), or cluster attributes (SINFO) that can
constrain your job. But sometimes you need to know if current values of dynamic LCRM attributes (such
as the current scheduler choice or scheduling cycle), changeable internal features of the "batch system"
itself, are affecting your (planned or submitted) batch job.

In that last case, PHSTAT ("production host status") is the LCRM utility to try. PHSTAT runs wherever
PSUB (page 28) runs (as a native tool, not Moab-emulated). If executed without options, PHSTAT reports
a text table of LCRM-managed hosts (one for OCF, a different table for SCF) that reveals for each listed
host:

• How LCRM now schedules that host (cluster backfill, memory backfill, multi-node backfill, or no
backfill),

• The current status of several LCRM scheduling daemons,

• Whether LRMMGR's NORUNNEW feature has been turned on to block the start of jobs on that
host,

• Whether timedout, staging, or terminating jobs are being scheduled,

• Total usable memory and percentage of memory already in use ("memory load"),

• The count of already committed nodes and total available nodes (but not the available node names),
and

• Time (in seconds) since the local LCRM scheduler last ran.

If executed with the -t option, PHSTAT replaces its default memory and node report (above) with a
table showing the current type and version of operating system and native batch system available on each
LCRM-managed host. PHSTAT ends after displaying its report, from which you can optionally suppress
the column headings (with -H) for easier postprocessing.

On LC machines where Moab has replaced LCRM for batch-job scheduling, most PHSTAT details
are no longer relevant and PHSTAT does not run. You can get a little dynamic information from Moab by
excuting

mshow -a

EZJOBCONTROL - 23

BAC

The BAC utility reports the name of your (computer time) bank and three batch-relevant bank privileges:

ACCESS tells whether you can merely use (U) the bank, or also expedite (E) jobs funded from
it. See the Constraint Summary (page 27) below.

SC reports your remaining number of authorized "short production" days, usually 0. See
the Constraint Summary (page 27) below.

EC reports your remaining number of authorized "job expediting" days, usually 0. See
the Constraint Summary (page 27) below.

BT and RDBSEE (Replaced)

The former BT utility reported the computer time (in the form hh:mm) for your bank that was
ALLOCATED, USED, and still AVAILABLE. With the start of fair-share scheduling in 1998, the PSHARE
(page 26) utility now fills somewhat the same role that BT once did.

The former RDBSEE utility with the -B option reported data from the Resource Data Base, including
your default (DEFPRIO) and maximum (MAXPRIO) "local priority" (both 0 for most users). Ironically,
DEFPRIO, MAXPRIO, and the "local priority" they control (and that some users can specify with PALTER's
-p option) still pertain to LC production machines where fair-share scheduling is used. But you can no
longer run RDBSEE to discover your DEFPRIO or MAXPRIO values, and your fair-share priority is
completely independent of and different from that "local priority." See the PSHARE (page 26) section
below for some suggestions.

EZJOBCONTROL - 24

PHIST

PHIST helps you plan future jobs by summarizing the actual amount of memory used by recent past
jobs (yours or someone else's). The PHIST utility lists job-memory-size statistics and history. This
information includes the average or mean job size and standard deviation of job sizes as well as up to the
five most recent job sizes listed in order of termination. The data sizes are based on the maximum resident
set size attained during the jobs' execution. On multinode hosts, the maximum resident set size for a job
is defined as the maximum resident set size attained on any of the nodes on which the job executes.

A sample PHIST report is shown in Figure 1.

Here, the first column shows the host name, for example, west and east. The second column shows the
size of the job run, and the third column shows the difference in the size of jobs run. The last column shows
the sizes of the last jobs run up to a maximum of five jobs.

To use PHIST (only on machines scheduled by LCRM, not Moab), type

phist
at /usr/local/bin/.

PHIST's most useful control options are:

-c constraint shows only jobs that meet your specified constraint. If you are not familiar with
constraints, refer to Step 4: Submit Your Job (page 31).

-u username compares your jobs with those of other users or shows their memory histories even
if you have no recent jobs of your own.

EZJOBCONTROL - 25

PSHARE

On all LC production machines, "fair-share" political scheduling (page 7) has replaced time-allocation
political scheduling. This significantly affects your constraint planning for batch jobs because under the
fair-share approach:

• Shares (your entitlement to compute resources) are NOT decremented or exhausted as you do work,
in contrast to a fixed allocation of CPU minutes tied to a shift. Instead, your shares and your past
usage (of CPU time) together determine your (constantly changing) scheduling priority.

• Just as your current fair-share priority is computed from your AGGREGATE shares and usage, it
applies to ALL your jobs. It varies with time (see next item), but at any one time all your jobs funded
from the same bank for the same set of machines (LCRM partition) have the same fair-share priority,
regardless of job features.

• Both your shares and your usage are normalized (divided by sums) over the set of currently ACTIVE
users. This means that while traditional job priorities were independent of who was logged in,
fair-share priorities vary greatly and sometimes suddenly as the instantaneous user set changes on a
machine. LCRM recomputes your fair-share priority once every minute and checks your usage every
540 seconds.

• The "local priority" that some users are allowed to set using PSUB's -p option affects only how your
job competes with other jobs in the same bank. Despite the name, this is completely independent of
and different from your (more important) fair-share priority.

The PSHARE utility (on LCRM-scheduled machines only) fills roughly the same role for fair-share
scheduling that the BT utility filled for traditional time-allocation scheduling: it gives you indirect clues
about how your job(s) will compete against the work of others. PSHARE reports your (raw and normalized)
shares, your nomalized aggregate usage, and (optionally) your current fair-share priority, and you can
request these values for other users (with -u) or banks (with -b) as well. For a description and analysis of
the assumptions and algorithms that PSHARE relies on for its normalization, usage decay, and priority
calculations, see the Fair Share Scheduling (URL: http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s5)
section of the LCRM (DPCS) Reference Manual.

Among PSHARE's most useful options (usually used simultaneously) are:

-p reports each user's current fair-share priority, a decimal number between 0 and 1
inclusive that reflects relative likelihood to get more compute resources.

-t bankname reports on the specified bank (usually your bank) and all its authorized users. This is
the set of people whose (current but often-changing) active/nonactive status most
affects your fair-share priority.

-0 (zero, same as -O, uppercase oh) omits from PSHARE's report users with no current
usage. This prunes the (usually many) nonactive users, whose normalized shares and
priority are always 0 by definition, yielding a much easier to interpret report.

EZJOBCONTROL - 26

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s5

Alternatively, you may want a report on the current status of all the parents of your bank, since your
bank hierarchy (page 8) strongly affects the "normalized value" of your shares. In that case, use PSHARE
with the option

-r bankname reports the shares, normalized shares, and (aggregate) normalized usage for the
specified bank (usually your own bank) and all of its parents up to the top of the bank
hierarchy.

To avoid confusion, PSHARE lets you report exclusively on either of two sets of parameters:

-sched (the default) reports the normalized shares, priorities, etc., only for batch jobs scheduled
by LCRM.

-active reports the normalized shares, priorities, etc., used as session parameters by all active
sessions, both interactive and batch.

On LC production machines where Moab has replaced LCRM as the across-cluster batch-job scheduler

mdiag -f

has replaced PSHARE as the tool for reporting detailed share-like usage information.

Constraint Summary

Once upon a time, your batch job's "local priority" (assigned with PSUB's now-defunct -p option)
affected how your job competed locally, with other jobs funded from the same bank. Your batch job's
short-production status (assigned with PSUB's former -sp option) or its "expedite" status (assigned with
the PEXP utility) affected how your job competed globally, with jobs funded from other banks. Today,
however, LCRM changes have disabled or greatly altered all of these once-important scheduling factors
for typical batch jobs on most LC production machines.

In practice, for most users, factors unrelated to the specific features of your individual job determine
more than anything else how your job competes against other jobs waiting to run in the batch system:
(1) The bank you draw on and its hierarchical relationships (page 8) to other banks strongly affect how
your shares and your past usage are "normalized" in fair-share scheduling calculations.
(2) Changes in the mix of currently active users (URL:
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=5.1.2) can cause large, sudden changes in your influential
fair-share priority, over which you have little control.
(3) Local limits (page 20) on the number of simultaneous jobs per machine or per user can sometimes
significantly affect when or where your job will run. Global limits, applied to a whole batch partition, can
interact intricately with local limits too. See the beginning of Step3 (page 20) for how to discover these
limits.

For a more detailed look at the assumptions underlying LC scheduling policy, see the Job-Scheduling
Policy (page 7) section above. For details on the fair-share priority algorithms and their hidden implications
for your work, see the Fair Share Scheduling (URL: http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s5)
section of the LCRM (DPCS) Reference Manual.

EZJOBCONTROL - 27

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=5.1.2
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s5

Step 4: Submit Your Job
On LLNL Machines.

PSUB:
Run PSUB to submit your job, taking note of the crucial (page 30), the helpful (page 31), and the sometimes
misleading (page 39) PSUB options explained here (and illustrated at the end of this section). A separate
subsection (page 34) compares the special PSUB options that you need to manage the detailed execution
of a parallel job.

On LCRM-scheduled machines, PSUB is a native tool whose options are explained in this section. On
Moab-scheduled machines, however, PSUB is only an emulator and only a subset of its options are
automatically translated into MSUB options. To see which PSUB options MSUB supports, and for
information on an LCRM-to-Moab script converter as an alternative, consult the "PSUB Options Conversion"
section (URL: http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.5) of the Moab at LC user guide.

OPTION PRIORITY:
PSUB options that you want to invoke with every run, such as output control options, can be imbedded at
the start of your job script file, as explained in the Annotated Batch Script (page 10) section above. If you
include the same PSUB option both on your execute line and in your script file (with different arguments),
the version on the execute line takes precedence over the version in your script.

EXPEDITING:
Only LCRM managers or others specifically authorized by them can use special PSUB options to expedite
a job, exempt it from the usual job limits, or force its priority to a preassigned value. For instructions on
these privileged uses of PSUB, see "Expediting and Exempting Jobs" in the LCRM (DPCS) Reference
Manual (URL: http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.11).

SCRIPT VERSIONS:
When LCRM accepts your submitted job (by returning a job id number) it copies your script (and other
metafile information) from the submitting machine to LCRM's own "control host." This avoids start-up
delays, but it means that changes you make to your copy after this point will NOT affect how the (original
"spooled") script executes. So the time to correct flaws in your script is before you submit it to LCRM,
not afterward.

SCF DOMAINS:
All OCF (open-network) machines scheduled by LCRM lie in a single scheduling domain: you can submit
(PSUB) a job on any OCF machine to run on any other, or monitor (PSTAT) any job from any machine.
Starting in September, 2005, however, LCRM divided SCF (secure-network) machines into two disjoint
scheduling domains (based not on operating system but on underlying batch system):

• All LoadLeveler machines (UM, UV, Tempest, etc.; these are also all AIX machines), and

• All SLURM machines (ACE, QUEEN, LILAC, PU, etc.). Note that PU is an AIX machine that
nevertheless uses SLURM rather than LoadLeveler to manage its jobs.

The practical impact of the SCF domain split is that LCRM tools (such as PSUB and PSTAT) only work
with hosts within a single domain, not across domains. Consequently, on SCF, you cannot submit or
monitor LoadLeveler jobs from SLURM machines or vice versa.

EZJOBCONTROL - 28

http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.5
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.11
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.11

SRUN ROLE:
LLNL Linux (CHAOS) machines even without LCRM/DPCS still provide a way to submit parallel jobs
to a local queue managed by LC's Simple Linux Utility for Resource Management (SLURM). SLURM's
SRUN tool (URL: http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2) enables elaborate (but purely
local) control of your job's nodes, task distribution, I/O handling, and other resource use. See the SLURM
Reference Manual (URL: http://www.llnl.gov/LCdocs/slurm) for examples of using SRUN to launch such
"local batch" jobs.

Elsewhere.

Offsite, nonLLNL ASCI collaborators can submit their collaborative MPI projects to run on the ASC
Tri-lab machines (when available) by using GLOBUS (rather than PSUB) as a remote front end to LLNL's
local batch system. The GLOBUS project is a team effort to promote distributed supercomputing by
Argonne National Laboratory, NCSA, NASA, the University of Chicago, and the University of Southern
California. To prepare for future GLOBUS-based use of ASC Tri-lab machines, you can review general
project materials at the www.globus.org (URL: http://www.globus.org) web site, or download a PDF or
PS version of the Globus Quick Start Guide (36 pages) by following the instructions at

http://www.globus.org/documentation/quick_start.html

Significant inside information and local modifications are needed, however, to actually invoke GLOBUS
to submit jobs to LC. Consult the Globus User Guide (for LC) (URL: http://www.llnl.gov/LCdocs/globus)
for a localized list of step-by-step instructions, relevant hints about using GLOBUSRUN in place of PSUB,
and a summary of the most useful features of the GLOBUS Resource Specification Language.

EZJOBCONTROL - 29

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/slurm
http://www.globus.org
http://www.globus.org/documentation/quick_start.html
http://www.llnl.gov/LCdocs/globus

Crucial PSUB Options

-b bankname specifies the bank to draw CPU time from when your job runs (you must be authorized
to draw against the bank you specify). Everyone has a default bank now, but it may
not be appropriate for charging your batch jobs on all machines. So overtly specifying
your desired bank when you submit each job is good practice.

-lM size specifies your job's memory needs, but only in an optional, advisory way. See the
"Misleading Options (page 39)" section below for a full analysis of -lM's real role
and syntax.

-lt mmm specifies the maximum CPU time (in minutes) for each process in your batch job. A
process that exceeds this time limit is killed. (To specify hours instead of minutes,
use the form hh:mm or use an h suffix, as in 5:00 or 5h.) PSTAT reports this value
as "time limit per CPU." To specify a total-job (or, on most LC machines, per-CPU)
instead of a per-process time limit, use -tM.
WARNING: once you specify a limit with PSUB's -lt, you cannot later change it by
running PALTER (see -tM below as an alternative that you can change with PALTER).

-tM mmm specifies the maximum CPU time (in minutes) for your entire batch job (on SMP
systems, such as ACE or QUEEN) or per-CPU (on "multi-node" systems, including
virtually all other LC production machines). A job that exceeds this time limit is killed
or checkpointed. (Remember that -tM 1000 means 1000 minutes. To specify hours
instead of minutes, use the form hh:mm or use an h suffix, as in 5:00 or 5h.) A 4-CPU
job slated to run for 1 hour would need -tM 4h on an SMP system, but it would need
-tM 1h on an LC multi-node system. Starting in February, 2006, the -tM time limit
includes idle time on allocated but not-used nodes, and it is reported by PSTAT as
"time charged."

You can use both -lt and -tM if you want to impose both kinds of limits on the same
job. And, if you start a job and forget -tM, you can change your job's default total
time limit (usually 30 minutes) to the value you would have specified with -tM by
running PALTER (page 45) after you submit the job (but you cannot use PALTER
to change a limit set with -lt).

[You can optionally limit your job's wall-clock time as well as its CPU time; see -tW
in the next section.]

EZJOBCONTROL - 30

Helpful PSUB Options

-c constraint limits the set of hosts (machines) on which your job can run to only those that have
the feature(s) that you specify with constraint. Even if a requested feature happens
to be the name of a node pool (e.g., pbatch), however, -c never also limits your job
to that set of nodes (you must instead use the -pool option along with -c). So -c only
selects machines and -pool only selects node sets. See -pool below. By default, a job
runs on the machine where it was submitted.

You can conjoin two constraints by using the form
-c "con1&con2"
or disjoin two constraints by using the form
-c "con1|con2"
Note that no extra space is allowed within the -c argument, so that "yana | 2048Mb"
is INcorrect syntax.

MULTIPLE CONSTRAINTS:
PSUB accepts only one -c option per job. If a script contains several -c option lines,
all are discarded (without warning) except the LAST one. If one -c option appears on
PSUB's execute line, that will override the last -c option within the submitted script.
The ONLY way to impose multiple constraints on the same job is to use one -c option
and conjoin (&) or disjoin (|) its multiple arguments within quotes, as shown in the
syntax above.

DISCOVERING CONSTRAINTS:
The name of each production machine is a constraint and -c is most often used to
limit job execution to one or more machine(s) you specify. For example, you could
use -c "yana25|yana26" on the open YANA cluster. If a machine supports any other
constraints you can discover them by running the LRMMGR utility and responding
to its prompt with the string

show host machinename

At the end of LRMMGR's multiline report is a field called "assigned features" that
lists the constraints you can use with -c on that machine (only).

DEFAULT CONSTRAINTS:
LCRM managers can use the DEFCONST option of LRMMGR to specify default
constraints for each partition (group of machines managed by LCRM). LCRM then
treats every job submitted with no -c PSUB option as if it had been submitted with
the default constraints.

EZJOBCONTROL - 31

THE Mb CONSTRAINT:
You can specify your job's per-node memory needs by using the attribute-laden version
of PSUB's -ln option. (page 34) Formerly, you could specify your job's total memory
needs by using a number followed by the string "Mb" as a constraint (an argument
for -c). Now, however, Mb represents a purely undefined feature (not memory) that
some LC machines happen to accept as a constraint. For example, you could specify

psub -c "lustre&2048Mb"

which would limit your job to run only on machines that have the Lustre file system
and at least 2048 units of something called Mb, but this has no effect on memory
requirements for your job.

SRUN CONSTRAINTS:
On LC Linux (CHAOS) machines, the local job-management tool SRUN (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7) supports eight additional
constraint options (for example, a genuine memory constraint plus others on which
nodes to use and avoid, and on node contiguity) that let you impose much more
fine-grained (but purely local) constraints on your parallel Linux jobs. You can also
use SRUN within LCRM scripts.

-np cpn (default is 1, replaces -cpn) specified CPUs per node on cluster-scheduled machines
(such as GPS, no longer in service at LC). On node-scheduled machines (IBM/AIX
or Linux/CHAOS clusters) -np is just advisory and is always dominated by any
CPUs-per-node information contained within the argument(s) of the -ln option (see
the next subsection (page 34) for details).

-pool pname (default varies by machine) limits the set of nodes (within a multinode "host" or
cluster, but never the set of hosts) on which your job can run to the pool or partition
called pname (e.g., pviews). LCRM first uses -c (see above) to limit your job to
specified hosts (machines), then separately uses -pool to limit it to a specified node
pool (partition) on any hosts that qualify. Even if a node pool name is also a possible
machine constraint (e.g., pbatch), -pool alone never selects machines on which to run
your job. Without -pool, LCRM uses the target machine's default node pool.

-prj projectname

designates projectname as an optional, convenient label (up to 127 characters) for
your job (reported in PSTAT -f reports and takes the place for tracking purposes of
the former "account" attribute that was eliminated in August, 1005).

-s shellpath (lowercase ess) specifies the absolute pathname of the shell (e.g., /bin/csh) that your
job should use. Including the string #!shellpath as your script's first executable line
is a more reliable way to do this. Note that MSUB uses -S (uppercase ess) to specify
the job's shell.

EZJOBCONTROL - 32

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7

-standby places your job in STANDBY (S) class, that is, with such a low scheduling priority
that it runs only when no normal or expedited jobs are available to run. LCRM
terminates standby jobs as soon as any higher priority job arrives (with grace time
only if the job registers for a signal; see the LCRM (DPCS) Reference Manual's (URL:
http://www.llnl.gov/LCdocs/dpcs) "Class Values" section for standby termination
details and workarounds). You can change the standby status of a queued job (but
not one that has started running) with PALTER. (page 45) (Not all machines allow
STANDBY jobs; see "Discovering Constraints" above for how to discover if
STANDBY is allowed on a specific machine.)

-tW mmm specifies the maximum wall-clock time (officially called "elapsed run time") in minutes
for your entire batch job. A job that exceeds this time limit is killed or checkpointed.
LCRM defines elapsed run time as the difference between the time when your job
completes and when it starts to execute. Using -tW is always optional, and is logically
independent of -tM (maximum CPU time), but the default value of maximum elapsed
run time depends on your -tM setting on some machines, as this chart shows:

Machine Elapsed run time -tW limit
 Default Maximum

IBM SP Equals time Equals maximum
 specified CPU time limit
 with -tM for job pool
 (30 min if
 -tM omitted)

Linux Unlimited Unlimited

PSTAT (with -f) reports your -tW setting (if any) as "elapsed run time limit." Use the
format hh:mm to specify hours instead of minutes, as with -tM.

-v (verbose) displays nonfatal PSUB warning messages (by default PSUB reports only
errors that prevent submittal of the job).

-x (lowercase eks) passes specific environment-variable values (that you specified in
your dot files or interactively) from the machine where you submit your batch job to
the machine where it executes (they are not all passed by default). PSUB-string
environment variables capture some aspects of your submittal environment, and
LCRM sets about two dozen other environment variables by default. But all of your
additional environment-variable customizations are passed to your job only if you
invoke -x. ENVIRONMENT is always set to (the uppercase string) BATCH on the
execution machine, and the value of LD_LIBRARY_PATH is never passed even if
you invoke -x (instead, set it within your job script if you need a nondefault value).
For more details on how -x works, see the "How LCRM Uses Environment Variables"
section (URL: http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4.2) of LC's
Environment Variables user guide. MSUB users can get the same result by invoking
MSUB's -V (uppercase vee) option, while -v (lowercase vee) passes only specified
environment variables.

EZJOBCONTROL - 33

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4.2

Parallel PSUB Options

WARNING: if your batch job runs a massively parallel program but directs all output to your common
home directory (or to any globally mounted file system), this flood of network traffic to the NFS-mounted
file server will probably degrade performance not only for you but for all users on all machines that share
that file system. Responsible computing means sending your parallel-code output only to the dedicated
parallel file system that is mounted on just your execution machine. See LC's I/O Guide (URL:
http://www.llnl.gov/LCdocs/ioguide) for specific advice.

These PSUB options serve exclusively to manage in detail the way that a parallel job executes in batch
on a massively parallel machine.

Generally Available:

-ln arg (REQUIRED for all parallel jobs on multinode machines; without -ln the job runs as
a single-node serial job.) The -ln option specifies how many nodes the job needs, and
(optionally) how needed features (such as memory or CPUs) should be distributed
among those nodes. PSUB accepts -ln in either of two formats (both explained below):
the first is attribute free and the second is attribute laden (so the syntax for arg varies
between them). See also -pool in the previous section (page 31).

-ln num requests num nodes without specifying the features or attributes of those nodes. Here
num may be:
(1) a positive integer (example: -ln 8), which requests exactly that number of nodes,
or
(2) a hyphen-separated pair of integers (example: -ln 48-64), which requests at least
the first number of nodes and at most the second. LCRM assigns to such range requests
the largest number of nodes that are free (within the specified range) such that no
higher priority job is delayed by the assignment.

-ln 'minnodes[-maxnodes] (attlist)'

(NOTE the single quotes that begin and end the argument of -ln here; they protect
enclosed characters from interpretation by your current shell) specifies a number of
nodes and a list of quantified attributes or features distributed among those nodes,
where:

minnodes is the smallest number of nodes that this job needs (a positive
integer).

maxnodes is the largest number of nodes that this job needs (a positive integer
greater than minnodes.) If you need a specific number rather than a
range, use only minnodes.

EZJOBCONTROL - 34

http://www.llnl.gov/LCdocs/ioguide

attlist is a parenthesis-enclosed, comma-delimited list of attribute
assignments to nodes, where each member of attlist has the format

nodect[:(quan att, quan att,...)]

For example, 2:(8cpn,4Gb), 4:(4cpn,16Gb), 24,...
Here the subcomponents of each attlist item are:

nodect is the number of nodes that need to have the
atttibute(s) specified by the quan att pairs after the
colon (a positive integer).

quan is the quantity for each attribute (a positive integer,
such as the number of CPUs per node or the
amount of memory). If the attribute is an abstract
unitless feature (such as "gcard"), omit quan (such
as 2:gcard).

att is the attribute assigned to (required of) the nodect
nodes. LCRM now accepts as attributes either
abstract unitless features (such as "gcard") or either
of two predefined features, namely:

(1) CPUs PER NODE.
This is always expressed as a number (quan)
followed by the string CPN (such as 8cpn). You
cannot use both the CPN attribute here and the
separate -cpn PSUB option on the same execute
line.

(2) MEMORY.
This is always expressed as a number (quan)
followed by a string that indicates the byte units.
Acceptable byte-unit choices are:
GB|Gb|gb|MB|Mb|mb|KB|Kb|kb
(example: 16Gb). These units increase in 1000-fold
steps except that 1Kb = 1024bytes. The previously
used separate Mb PSUB constraint (-c) is still
accepted but it no longer specifies memory size
(merely an undefined feature called "Mb").

EXAMPLES:

 -ln '48(24, 24:16Gb)'

(note the enclosing single quotes) requests exactly 48 nodes of which 24 have no
feature requests and 24 must have 16Gb of memory.

EZJOBCONTROL - 35

 -ln '8-48(2:(8cpn,4Gb), 3:(4cpn,8Gb), 1:gcard)'

(note the enclosing single quotes) requests at least 8 but no more than 48 nodes, where
2 nodes have the first set of attributes (8cpn and 4Gb memory), 3 have the second set
of attributes, and 1 has the unitless gcard attribute.

GOALS:
(1) The node-range versions of -ln address the needs of those whose codes can scale
at run time to use as many suitable nodes as happen to be available when LCRM
schedules the job.
(2) The attribute-laden versions of -ln support jobs that run on heterogeneous clusters,
where node features vary significantly and the job can only run successfully on a node
subset with the specific combination of features that it needs.

IMPLEMENTATION:
(1) LoadLeveler--On IBM SP systems, LoadLeveler will support attribute-specified
"heterogeneous runs" as soon as its API scheduler is operational (a future release).
(2) SLURM--On LC Linux systems, SLURM can assign features to nodes but it
cannot yet quantify (count) those features when allocating nodes to jobs.

-cpn num (deprecated, better is -np) specifies the CPUs per node that this job requires on every
node that it uses. If your job requires different numbers of CPUs on different nodes
(a "heterogeneous job"), use the CPN attribute in the attribute-laden version of the
-ln option (above) instead. You cannot use both -cpn and the -ln CPN attribute on the
same PSUB execute line (and any latent conflicts are resolved in favor of -ln).

-g [tasks] [switch] [@ layout]
-g cpucount

(optional) specifies the job's "geometry," now used by LCRM (only) to calculate the
job's tasks/node. Option -g is implemented for AIX machines, regardless of whether
they use LoadLeveler or SLURM as the underlying job-control system, but it is not
implemented for LC Linux/CHAOS machines. Here:

tasks is the total number of tasks for this job (default is 1).

switch (ignored on Compaq machines, used only on IBM SP machines) is
the type of communications switch desired for this job, which may
be either

ip specifies Internet Protocol.

us specifies User Space (the default).

EZJOBCONTROL - 36

layout specifies how the job's tasks are spread among its nodes, where the
choices are:

tpn num specifies num as the tasks per node, or

dist spreads the tasks as evenly as possible among the
nodes (the default).

cpucount (BG/L only) specifies the number of CPUs desired on each
1024-CPU BG/L node, where the only allowed values are 256 (a
quarter node) or 1024 (all other values are "rounded up" to either
256 or 1024).

-net protocol (optional) specifies your job's between-threads communications protocol, where the
choices are MPI (the default and usually best choice) or LAPI (a low-level API library
for those few who want to develop their own alternative to MPI).

-nettype adapter

(optional) for IBM machines with two network adapters per node ("double-single"
architecture, such as Frost, Ice, and White), specifies which network adapter to use,
where the choices are csss, css1, and css0 (the default, and the only choice on
one-adapter IBMs). NETTYPE is ignored on all nonIBM machines.

-nobulkxfer disables the use of Remote Direct Memory Access (RDMA). RDMA speeds MPI
communications for some parallel codes running on IBM Power4 AIX machines (only
applies to UM and UV at LC). RDMA, where it exists, is on by default.

Available on BlueGene/L ONLY:

-bgl "srun-options"

accepts as attributes control information that LCRM passes directly to SLURM's
SRUN tool to manage your job in ways that only pertain to the special resources of
BlueGene/L. The whole -bgl attribute list must be quoted and comma delimited with
no internal spaces (e.g., "norotate,node_use=coprocessor"). Each of these (optional)
-bgl attributes maps to one BG/L-only SRUN option with the same name:

geometry=N[xM[xO]]

specifies your job's size in "nodes" in each direction within BG/L's
field of nodes (e.g., geometry=1x2x4 for 8 nodes). SLURM regards
each BG/L 512-node dual-processor "base partition" as a single
1024-processor node. Use SLURM's SMAP utility on BG/L to
visualize job layout and the geometric intermixing of several jobs.

If you omit this geometry attribute, then PSUB uses 1x1x1 as
the default (or if you also use -ln num then PSUB uses numx1x1 as
the default). If you omit O then the default geometry is NxMx1; if
you omit both M and O then the default is Nx1x1.

EZJOBCONTROL - 37

conn_type=mesh|torus

specifies the type of interconnect that you want used between BG/L
"base partitions" ("nodes" to SLURM), where the choices are mesh
(the default) or torus.

node_use=coprocessor|virtual

specifies how to use the second processor on each BG/L compute
node, where the choices are coprocessor (the default, so that the
processor number is always t0) or virtual (allows processor numbers
t0 and t1, but seems to be incompatible with the TotalView
debugger).

[no]rotate disables rotation of job geometry to fit available space (the default
is to rotate).

EZJOBCONTROL - 38

Misleading PSUB Options

-lM size (optional, advisory) estimates a job's per-node (high-water-mark) memory needs. The
LCRM scheduling algorithm now uses this advisory guess of memory needed, along
with historical data on the actual memory used by your five most recent batch jobs,
to minimize the risk of memory oversubscription when it plans when and where to
run your job. Jobs that exceed their specified -lM memory advisory are not terminated,
however, so this is not a rigid maximum as are the -lt and -tM time limits discussed
in the "Crucial Options (page 30)" section above. (Note that you can specify your
specific per-node memory needs by using PSUB's -ln option. (page 34) Or you can
run PLIM (page 20) to discover the maximum allowed size for a batch job on the
machine where you plan to run.)
For -lM, size always has two contiguous parts (mmmuu):

mmm is the memory-needed guess in digits (e.g., 500).

uu is the unit of memory, where the choices are b, kb, mb, or gb (for
bytes, kilobytes, megabytes, or gigabytes). Thus 25gb specifies 25
gigabytes of memory.

-ln num does NOT specify the NICE value of your job as it does in some other UNIX
environments, but rather -ln at LC specifies the minimum number of nodes required
for a parallel job, (page 34) and optionally the attributes that those nodes must have.
NICE values are not an important feature of LC batch jobs.

-p prio (reserved) PSHARE (page 26) reports your job's computed fair-share priority, which
authorized users (only) can override by using PSUB's (or PALTER's) privileged -p
option (see the "Forcing Job Priorities" section of the LCRM (DPCS) Reference
Manual (URL: http://www.llnl.gov/LCdocs/dpcs) for details). If you are not authorized
but try to use -p anyway, LCRM still accepts your submitted job but it automatically
ignores your priority request.

EZJOBCONTROL - 39

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/dpcs

PSUB Examples

When you submit a job with PSUB, remember that the maximum length of an LCRM job name (and
hence a script name) is 15 characters (although user names can be 31 characters and -prj "project names"
can be 127 characters).

(1) A typical use of PSUB to request a 10-CPU-hour run of the batch script PROJ23 (on any available
node in the cluster from which it was submitted) might be:

psub -b sci -tM 10:00 proj23

(2) A typical use of PSUB on the YANA cluster to force PROJ24 to run on either YANA25 or YANA26
(nodes with high CPU time limits) for no more than 6000-minutes/process might be:

psub -b sci -lt 6000 -c "yana25|yana26" proj24

Note here that PSUB does NOT allow extra space within the -c constraint argument, so that trying
"yana25 | yana26" would be INcorrect syntax.

(3) A typical PSUB execute line to submit a parallel job PROJ25 to run with 16 tasks (g) on 8 nodes
(ln) of THUNDER (c) for 5 hours (tM) might be:

psub -b xyz -tM 5:00 -ln 8 -g 16 -c thunder proj25

(4) A typical PSUB execute line to submit a parallel job PROJ26 to run on 10 nodes (-ln) in the pviews
partition (-pool) of the THUNDER cluster (-c) in standby (very low priority) mode might be:

psub -b xyz -ln 10 -c thunder -pool pviews -standby proj26

(5) Two equivalent PSUB execute lines to submit a parallel job PROJ27 on 48 nodes each of which
must have at least 4 CPUs per node are:

psub -cpn 4 -ln 48 proj27

psub -ln '48 (48:4cpn)' proj27

Note the single quotes in the second version. To also specify at least 4 Gb of memory per node, use the
form

psub -ln '48 (48:4cpn,4Gb)' proj27

(You can run PALTER (page 45) after you submit your job to adjust some, but not all, of the job
features that you assigned originally with PSUB.)

EZJOBCONTROL - 40

Environment Variables and Job Submittal

The Livermore Computing Resource Management (LCRM) system uses many, diverse environment
variables to manage your batch jobs and to run those jobs successfully on your target machine. LCRM
divides the batch-relevant environment variables into four disjoint sets (and you can optionally set others
and pass their values to your job when you submit it if you wish).

For every batch job that LCRM manages, it interacts with four disjoint sets of environment variables
as follows (independent of any others declared by each job's owner):

 A. SUBMITTAL environment variables--
 Those that LCRM creates from your job and its
 environment when you run PSUB.
 B. EXECUTION environment variables--
 Those that LCRM sets for your job in the job's
 execution environment, automatically.
 C. UNSET environment variables--
 Those that LCRM unsets for your job
 when the job executes.
 D. DEPRECATED environment variables--
 Formerly important for LCRM but now replaced
 by others in sets A, B, or C.

Using PSUB's -x option (page 31) lets you pass to your job any additional, customized environment-variable
values not covered in A, B, C, or D above but set by you before you run PSUB (on the submittal machine).
For a detailed comparison of which environment variables fall into each group and the order in which
LCRM sets those environment variables when your job begins to execute, see the long "Batch-Job
Environment Variables" section (URL: http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4) in LC's
Environment Variables guide.

On LC machines where Moab has replaced LCRM for batch-job scheduling, environment variable
handling depends on whether you submit your job using the PSUB emulator or the native MSUB tool. See
the "Environment Variables" section (URL: http://www.llnl.gov/LCdocs/moab/index.jsp?show=2.3) of
the Moab at LC user guide for details. PSUB users can still invoke -x to pass all environment variables
from the submittal to the execution environment, while MSUB users can get the same result by invoking
MSUB's -V (uppercase vee) option. MSUB's -v (lowercase vee) passes only those environment variables
that you specify.

EZJOBCONTROL - 41

http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4
http://www.llnl.gov/LCdocs/moab/index.jsp?show=2.3

Step 5a: Monitor Your Job
You can discover your batch job's unique LCRM identifier (its JID), monitor its current status, and

remind yourself of its attributes (some of which you can edit with PALTER (page 45)) by using the PSTAT
utility. If run without options, PSTAT reports a line of column headers and then a one-line summary for
each not-finished batch job submitted by the person who runs it (beginning with that job's JID).

For each job it reports, PSTAT output gives a one-word status code (such as RUN or DEPEND),
supposed to reveal if the job is underway or why it is not. The meaning of some status codes (e.g., ELIG),
however, is obscure or ambiguous. See the LCRM (DPCS) Reference Manual (URL:
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1.2) for an explanatory, alphabetical list of the 3 dozen
job-status possibilities. See also the comments on Moab job states under -A below.

SCF WARNING: On the secure network (only), LCRM divides machines into two disjoint scheduling
domains: those that manage their jobs with LoadLeveler and those that manage their jobs with SLURM
(see Step4 (page 28) above for details). Even if you invoke the -n or -A options (below), PSTAT only
reports on those jobs within the LCRM domain to which the machine where you run it belongs. You must
run PSTAT on an SCF machine in the other domain to report on any jobs in the other domain.

If you need additional, nondefault information (for example, about jobs other than your own) the
following PSTAT options are especially helpful:

-n jid reports a one-line status summary for any not-finished batch job (in this LCRM
domain; see the SCF warning above) whose unique identifier is jid, regardless of who
submitted that job.

-T -n jid same as -n jid but adding -T enables reporting instead on already terminated batch
jobs for 5 days after they have ended ("terminated" jobs were either removed by
running PRM (page 46) or they successfully ran to completion). Using -T alone
produces no output.

-A ("all") reports a one-line status summary for every not-finished batch job currently
under LCRM control (in this LCRM domain; see the SCF warning above). Thus you
can easily see what other jobs are in the batch system and what is the current status
of each compared to your job(s).

On LC machines where Moab has replaced LCRM, PSTAT with -A is fully emulated.
You may also use the native Moab tool SHOWQ for a very similar comprehensive
report (but some state names will differ). Moab does not enforce many LCRM resource
limits on jobs, and so PSTAT run on a Moab-scheduled machine will never report
that any jobs are in states that reflect those unenforced lmits (such as TOOLONG or
JRESLIM). See the "Job Status Comparison" section (URL:
http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.4) of the Moab at LC manual
for details on how LCRM job states map into Moab job states.

EZJOBCONTROL - 42

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1.2
http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.4

-f ("full") gives a detailed, 34-property report on your current batch job, or, if used along
with -n jid, on any batch job whose jid you specify, regardless of who submitted it.
This reveals nonchanging job properties (such as executing host, bank, machine
constraint, and node pool) as well as changing ones (such as CPU time charged,
elapsed run time, and largest process size so far). Some properties reflect the whole
job and some are reported per CPU. In August, 2005, the optional "project" label
(-prj) replaced the former "account" attribute in all -f reports. For a field-by-field
explanation of the -f report, see the Run Properties (URL:
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.2b) section of the LCRM (DPCS)
Reference Manual. For instructions on customizing your report by using PSTAT's -o
option (or the PSTAT_CONFIG environment variable), see the Reporting Memory
(URL: http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.7) section of that manual.

On LC machines where Moab has replaced LCRM, PSTAT with -f is fully emulated.
You may also use the native Moab tool CHECKJOB jid for a similarly detailed report
on the specified job (including even its allocated nodes), but in a very different format.
Moab does not enforce many LCRM resource limits on jobs, and so PSTAT run on
a Moab-scheduled machine will never report that any jobs are in states that reflect
those unenforced lmits (such as TOOLONG or JRESLIM). See the "Job Status
Comparison" section (URL: http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.4)
of the Moab at LC manual for details on how LCRM job states map into Moab job
states.

-D includes DELAYED status jobs. PSTAT covers DELAYED jobs in its -n or -A reports
but omits them from its default reports (on your jobs) unless you invoke -D.

-M -n jid | -m hostname

("machine" options) By default, PSTAT reports MULTIPLE as your job's status if it
could run on any of several clustered machines with perhaps a different status on
each. (See "Interpretation WARNINGS" (URL:
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1.1) in the LCRM (DPCS)
Reference Manual for more details.)
In either case, you can use -M or -m options to disambiguate these incomplete status
reports. -M yields a separate line with a separate status for each possible target machine
where jid could run. -m yields an explicit status for the specific hostname you specify
(e.g., -m yana25). You cannot use both -M and -m on the same PSTAT execute line.

LRMUSAGE (formerly PCSUSAGE).
Sometimes you may want a (CPU) time-used report that sums together many runs of the same job, or all
of your (recent) runs on a machine or "under" the same bank. LRMUSAGE, rather than PSTAT, is the
tool to use for such totaled time-used reports. You can run LRMUSAGE on any LC production machine,
open or secure, and request time-used reports for yourself (the default) or for other users sharing your bank
(only). LRMUSAGE options let you specify the start and end dates for each report, and even the time units
(minutes, seconds, hours), but not the time of day covered (all reports start at 0:00 and end at 24:00).
LRMUSAGE options sometimes interact in unexpected ways, so consult the Bank and Allocation Manual

EZJOBCONTROL - 43

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.2b
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.7
http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.4
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1.1
http://www.llnl.gov/LCdocs/banks

(URL: http://www.llnl.gov/LCdocs/banks) for an explanatory comparison of the options, with examples
of typical LRMUSAGE reports on total time used.

SPJSTAT.
On IBM SP (ASC) systems where job/node interaction can be especially important, a supplementary
job-reporting tool called SPJSTAT is available. Unlike PSTAT, SPJSTAT (run without arguments) reports
for every current LCRM job the number of nodes that the job uses, the job's user name (e.g., gsmith), and
the job's node pool (e.g., pbatch). Unfortunately, SPJSTAT reports jobs not by the (script) name that PSUB
assigns them and PSTAT reports, but by their "native" job-control identifier (such as 46929, rather too
mysterious to be helpful). See the POE User Guide (URL: http://www.llnl.gov/LCdocs/poe) for more
details. On LC machines where Moab has replaced LCRM at the batch-job scheduler (including
Linux/CHAOS machines), a native Moab tool called MJSTAT yields a job/node report very similar to
SPJSTAT's.

SQUEUE.
On LC Linux (CHAOS) clusters (open and secure), SLURM (Simple Linux Utility for Resource
Management) is the low-level (underneath LCRM) system that submits parallel jobs (with SRUN), allocates
nodes and other resources, and tracks resource use until jobs complete. SLURM's SQUEUE tool by default
reports a table of current SRUN-submitted local jobs, showing their SLURM ID (needed for SCANCEL),
job and user name, time used, status, and the specific nodes committed to each. You can also customize
SQUEUE reports, using a special syntax, to show your choice of any of 24 different features for
SLURM-managed local jobs. Using SQUEUE instead of PSTAT could be convenient, or even essential,
for effective job monitoring on new Linux machines (not yet managed by LCRM) or whenever you invoke
SRUN from within an LCRM script. See the SQUEUE section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.3) of the SLURM Reference Manual for option
details, output examples, and SQUEUE's job-state codes (which unfortunately differ from those reported
by PSTAT). As SLURM also spreads to LC AIX systems and replaces IBM's LoadLeveler, remember that
SQUEUE will then replace LLQ (and SCANCEL will replace LLCANCEL) even though the operating
system is not CHAOS.

NUMA HARDWARE TOOLS.
On LC Linux/CHAOS clusters (such as Atlas or Zeus) that have NUMA hardware (that is, CPUs with
"nonuniform memory access"), CHAOS supports extra user tools (TASKSET, NUMACTL, and
NUMA-MAPS) that report the current memory-allocation policy, current heap and stack use, and current
process/CPU bindings ("affinity") if any. All of these factors can strongly affect job performance on
NUMA-hardware machines. See the "For Users of NUMA Nodes" section (URL:
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2) of LC's CHAOS reference manual for more
background and usage advice.

GLOBUS MONITORING.
Users whose jobs are running on (or at least submitted to run on) trilab ASCI machines managed by the
Globus system may want to consult the "ASCI Grid Monitoring Services" web site provided by Sandia
National Laboratory to get job status and "state of health" reports on their Globus-managed jobs.
Authorization is required; see the Globus User Guide (URL: http://www.llnl.gov/LCdocs/globus) for the
current authorization rules.

EZJOBCONTROL - 44

http://www.llnl.gov/LCdocs/poe
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.3
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2
http://www.llnl.gov/LCdocs/globus

Step 5b: Alter Job Features
If reports from PSTAT suggest that some features of your batch job are inappropriate, you can change

(some of) them by running PALTER, or hold the job for further study by using PHOLD (until later released
with PREL). PEXP, used to "expedite" a job, is not available to most users and so is not discussed here.
(Likewise, only LCRM managers who are "expeditors," or others specifically authorized by them, can use
special PALTER (or PSUB) options to expedite a job, exempt it from the usual job limits, or force its
priority to a preassigned value. For instructions on these privileged uses of PALTER, see "Expediting and
Exempting Jobs" in the LCRM (DPCS) Reference Manual (URL: http://www.llnl.gov/LCdocs/dpcs).)

On LC machines where Moab has replaced LCRM for batch scheduling, PLATER, PHOLD, and PREL
are emulated (although each also has a native Moab counterpart, as noted in the Moab at LC (URL:
http://www.llnl.gov/LCdocs/moab) user guide. PEXE, however, is not emulated and you must use the
native Moab tool MJOBCTL to do its work.

Typical execute lines for these utilities are:

palter -n jid -f -tM hh:mm [-[no]standby]

changes the specified feature(s) of a specified batch job (already submitted), where

-n jid selects for change the job whose LCRM identifier is jid, as reported
by PSTAT. You can change only jobs that you submitted.

-f requests a noninteractive change. Without -f, PALTER prompts you
to confirm (by typing Y) the change you requested.

-tM hh:mm changes the total-job CPU (or, for multi-node hosts, the per-CPU)
time limit to hh hours and mm minutes. (Only LCRM managers can
increase the time limit of a running job; users can decrease it. Both
can increase the time limit of NONrunning jobs.) Other job features
you can change in this way with PALTER options include the jobs's
project name and bank (-prj, -b, but not if the job has started to run),
as well as its machine constraints (-c) and requested node pool
(-pool).
WARNING: PALTER cannot change the per-process time limit (set
with PSUB's -lt).

-[no]standby changes a queued normal job to standby or vice versa, where
-nostandby is the default and already running jobs cannot have their
standby class changed with PALTER.

phold -n jid -f -l u

noninteractively (-f) makes the job with indentifier jid ineligible to run until you
release it with PREL (its PSTAT status becomes "held"). You must include option
-l u (specifies a user-level hold) even though that is the only kind of hold most users
are allowed. PHOLD stops already running jobs only on machines (like the J90s) that

EZJOBCONTROL - 45

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/moab

support checkpointing. (Setting a job's priority to 0 has the same effect as using
PHOLD, except that the job's age continues to advance.)

prel -n jid -f noninteractively (-f) releases the job with indentifier jid to compete to run in the usual
way after a previous hold.

Step 5c: Delete Problem Jobs
To delete (remove) a batch job that you have previously submitted, first discover its LCRM indentifier

(its JID) by running PSTAT (page 42), and then execute the PRM utility by typing

prm -n jid -f

(or omit -f if you want an interactive prompt to confirm the deletion). You cannot delete another user's
jobs, although coordinators and LCRM managers can delete jobs for any user or bank under their authority.
If you ask to delete a job that has already started to run, LCRM first kills the job, then deletes it from the
batch system (no extra option needed). If a job is deleted with PRM by anyone other than the job's owner,
the owner receives an automatic, software-generated e-mail notification (into which the person running
PRM can insert a brief, optional explanatory message).

On LC machines where Moab has replaced LCRM as the batch scheduler, PRM is emulated (but you
can also invoke the counterpart native Moab tool MJOBCTL with -c). Within a single LC cluster (but not
between clusters), you can use the SLURM utility SCANCEL to signal (and hence, if you wish, kill) any
of your own SLURM-managed jobs or job steps on that cluster. See the SCANCEL section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.7) of the SLURM Reference Manual for options
and usage examples.

You can defer (and schedule) your job deletion if you append to the above execute line option
-A "MM/DD/YYYY hh:mm" (e.g., -A "08/15/1999 13:30" with many variations allowed) to specify a date
and time for the deletion to occur, or option -gt grace (e.g., -gt 15m) to specify an amount of wall-clock
time to elapse between when you execute PRM and when LCRM kills the job and deletes it.

Successfully deleted jobs are not subsequently reported by default by PSTAT. So you can only confirm
the deletion by the absence of the job's entry in (for example) the PSTAT -A report, or by explicitly looking
for an entry for the job by JID in the 5-day history file using PSTAT -T -n jid. To remove a job's history
entry after confirmation, you can type

prm -T -n jid

Step 6: Check Your Log File
Your batch log file by default ends up in the directory from which you SUBMITTED your job, unless

(as shown in the sample script (page 10) in this document) you explicitly request that it go elsewhere (such
as into a child of your common home directory) by specifying a pathname by using PSUB's -o option.

If (but only if) you invoke all the preparatory features shown in the sample script, then your log file
will contain a record of each command executed, as well as any error messages helpful for debugging.

EZJOBCONTROL - 46

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.7

When Things Go Wrong
This section describes what you can expect when several common but troublesome conditions arise

while you run your job (interactive or batch) on LC machines. (Reviewing the "Plan Your Job Constraints"
(page 20) section above can help you anticipate and avoid these problems.) This comparative approach
clarifies the differences (in cause and outcome) between superficially similar problems.

Job Exceeds Its Time Limit

If you have specified a per-process time limit (with PSUB's -lt option) or a total-job
time limit (with the -tM option), or if you rely on the default time limit on the machine
where you run, then when your job exceeds any of these time limits:

• Your job is killed.

• Output not already written to files is lost. This is a good reason to use PSUB's
-ro option (see the sample script (page 10)).

• Files not already stored may be purged or lost. This is a good reason to copy
intermediate results to storage periodically.

Job's Specified Time Exceeds Your Allocation

Impossible under fair-share scheduling. You have no fixed CPU-time allocation to
exceed. See the next item.

Job Exhausts Your Allocation

Impossible under fair-share scheduling. The fair-share approach tracks your total
usage of computing resources ("decaying" your old usage using a half-life of one
week) and adjusts your fair-share priority downward as your relative usage increases
(many other factors affect this process too). But no matter how large your usage on
one specific job, or on all jobs, you never "run out of time" absolutely. Instead, your
job just competes more poorly against other jobs for additional time.

Job Aborts Before Your Script Starts

For each job that it begins on your behalf, LCRM first sets your ENVIRONMENT
environment variable to the value BATCH, and then it sources (invokes) your dot
files (such as .cshrc and .login). So if your dot files force ENVIRONMENT to the
value INTERACTIVE, your LCRM-managed batch job may not run. The likely error
message for this problem (in your job's error file) will be

 Job aborted - pwsreg is not meant to be used
 in a non-batch mode.

To avoid this conflict, carefully set ENVIRONMENT in your dot files only if it is
not already defined:

 if (! $?ENVIRONMENT) then setenv ENVIRONMENT INTERACTIVE

EZJOBCONTROL - 47

Job Starts Your Script, Then Quickly Dies

This usually means that your job was unable to create the log or other output files
you specified (in your imbedded PSUB options at the top of your script, such as
PSUB-ro (page 10)) because needed directories did not already exist.

A common mistake when using -ro is to create your error/log directories on only one
machine in a cluster (e.g., THUNDER), but in a file system such as /var/tmp that is
local to each node. If you then allow the job to run on several (or many) nodes in the
cluster and if LCRM picks one for execution that lacks the needed directories, your
job dies almost immediately (as soon as -ro is encountered). Using a child of your
common home directory (shared by all nodes of all production machines) for error/log
output avoids this problem. (You can also restrict the job to run only on a specific set
of nodes by using PSUB's -pool option (page 31).)

Job Fails to Start

LCRM will not start your job if doing so would exceed any local (machine-specific)
limits (such as a maximum allowed number of jobs/user) on its target machine(s).
You can change some job properties with PALTER (page 45) (such as memory
requested) to avoid some limits, but you can only wait out limits on total jobs allowed.
Also, global (partition-wide) limits, especially on allowed jobs/bank, can have very
subtle, far-reaching effects on when LCRM starts waiting jobs. Use PSTAT (page
42) to see why LCRM has not started your job; use any of the utilities in the "Planning"
(page 20) section above to discover the many, interrelated limits that might be blocking
your job. See also the "Resource Partition Limits" section of the LCRM (DPCS)
Reference Manual. (URL: http://www.llnl.gov/LCdocs/dpcs)

Job Fails to Start Even if Expedited

Even if your job has been expedited, exempted from the usual constraints, or had its
priority forced by an authorized LCRM manager, it will never start before the earliest
begin-time that you specify with PSUB's -A option.

Job Gets DELAYED Status

Every machine has a maximum number of jobs per user that LCRM will actively
consider for scheduling. If your submittal exceeds this per-user threshold, your job
waits in DELAYED status until enough other jobs are scheduled that LCRM can
actively consider it on its merits. The LRMMGR command "show global" reports
this limit (among others). See the "Job Scheduling" section of the LCRM (DPCS)
Reference Manual (URL: http://www.llnl.gov/LCdocs/dpcs) for details. Moab does
not enforce this limit (and so PSTAT never reports DELAYED jobs) on the machines
where Moab has replaced LCRM. Use CHECKJOB to see why IDLE Moab jobs are
in that state.

EZJOBCONTROL - 48

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/dpcs

(On SCF) PSUB Cannot Find Your Target Machine
(On SCF) PSTAT Cannot Find Your Job

LCRM divides the SCF production machines into two disjoint domains. All machines
in one domain use LoadLeveler to manage their jobs, while all machines in the other
domain use SLURM (note that PU manages its jobs with SLURM even though it uses
AIX rather than CHAOS/Linux as its operating system). LCRM's tools, such as PSUB
and PSTAT, only act on the single SCF domain where you execute them; they ignore
the other domain. Hence, if you try to submit a job to run on any SCF LoadLeveler
machine (such as with -c um) by executing PSUB on any SLURM machine, PSUB
will return the error message "There is no host with the features you requested."
Likewise, if you execute PSTAT in one domain looking for status information about
any job in the other domain, even -A will fail to reveal it. On SCF machines, you
must execute PSUB and PSTAT within the same domain where you expect to run
and monitor your job(s); they do not work across domains.

EZJOBCONTROL - 49

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2007 The Regents of the University of California. All rights reserved.

EZJOBCONTROL - 50

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 53).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in EZJOBCONTROL.
availability Where these programs run.
who Who to contact for assistance.

introduction Role and goals of EZJOBCONTROL.

run-alternatives Ways to run compared.

dpcs-policy Job-scheduling policy summarized.
policy-background Broad LC scheduling background.
bank-policy How banks affect job scheduling.
shares-policy How shares affect job scheduling.

batch-scripts Annotated typical batch script.
psub-imbedded-commands #PSUB script commands explained.

differences Between-machine script differences.

job-steps Steps to run a batch job.
job-chart Chart of batch-job steps.
create-script Create you job's script.
store-files Store job's input files.
make-directories Make all directories in advance.
plan Plan for job constraints.

plim Four limit-revealing utilities.
lrmmgr Four limit-revealing utilities.
brlim Four limit-revealing utilities.
sinfo Four limit-revealing utilities.
phstat Variable scheduling attributes reported.
bac Bank privilege reports.
bt Former bank time reports.
rdbsee Former priority limitation reports.
phist Past-job size reports.
pshare Fair-share priority reports, rules.
constraint-summary How jobs compete, summarized.

submit Submit your job (PSUB).
psub PSUB's submittal role.

psub-crucial Crucial PSUB options explained.
psub-helpful Helpful PSUB options (-c, -pool).
psub-parallel Parallel-job PSUB options.
psub-misleading Confusing PSUB options explained.
psub-examples Typical PSUB execute lines.
environment-variables Environment variables in job submittal.

monitor Monitor your job (PSTAT).
pstat PSTAT's reporting role.
alter Alter job's features (PALTER).
palter PALTER's job-adjustment role.
delete Delete problem jobs (PRM).

EZJOBCONTROL - 51

prm PRM job-deletion role.
check-log Check your job's log file.

job-problems How common problems play out.
index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to EZJOBCONTROL.
revisions The complete revision history.

EZJOBCONTROL - 52

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
alter Alter job's features (PALTER).
availability Where these programs run.
bac Bank privilege reports.
bank-policy How banks affect job scheduling.
batch-scripts Annotated typical batch script.
brlim Four limit-revealing utilities.
bt Former bank time reports.
check-log Check your job's log file.
constraint-summary How jobs compete, summarized.
create-script Create you job's script.
date The latest changes to EZJOBCONTROL.
delete Delete problem jobs (PRM).
differences Between-machine script differences.
dpcs-policy Job-scheduling policy summarized.
entire This entire document.
environment-variables Environment variables in job submittal.
index The structural index of keywords.
introduction Role and goals of EZJOBCONTROL.
job-chart Chart of batch-job steps.
job-problems How common problems play out.
job-steps Steps to run a batch job.
lrmmgr Four limit-revealing utilities.
make-directories Make all directories in advance.
monitor Monitor your job (PSTAT).
palter PALTER's job-adjustment role.
phist Job size statistics.
phstat Variable scheduling attributes reported.
plan Plan for job constraints.
plim Four limit-revealing utilities.
policy-background Broad LC scheduling background.
prm PRM job-deletion role.
pshare Fair-share priority reports, rules.
pstat PSTAT's reporting role.
psub PSUB's submittal role.
psub-crucial Crucial PSUB options explained.
psub-examples Typical PSUB execute lines.
psub-helpful Helpful PSUB options (-c, -pool).
psub-imbedded-commands #PSUB script commands explained.
psub-misleading Confusing PSUB options explained.
psub-parallel Parallel-job PSUB options.
revisions The complete revision history.
rdbsee Former priority limitation reports.
run-alternatives Ways to run compared.
scope Topics covered in EZJOBCONTROL.
shares-policy How shares affect job scheduling.
sinfo Four limit-revealing utilities.
store-files Store job's input files.
submit Submit your job (PSUB).
title The name of this document.
who Who to contact for assistance.

EZJOBCONTROL - 53

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
29Aug07 run-alternatives
 Linux helper processes die when job completes.

plan Large memory page info updated.
delete SCANCEL info, link added.

30Jul07 brlim Moab ignores BRLIM job limits.
monitor Cross ref to Moab/LCRM job-state comparison.
job-problems Moab does not use DELAYED state.

20Jun07 differences Warning about /var/tmp on diskless nodes.
plan Cross ref on NUMA hardware support.
monitor Cross ref on NUMA reporting tools.

23May07 psub-helpful PSUB -s (MSUB -S) option added.
environment-variables

 MSUB -V, -v compared with PSUB -x.

20Mar07 introduction Cross ref added to Moab manual.
run-alternatives

 Moab gradually replaces LCRM.
plan Moab tool replacements noted for

 PSHARE, LRMMGR, PLIM, PHSTAT.
submit Moab emulates some PSUB options,

 cross ref added on Moab env. vars.
monitor Moab emulates PSTAT, plus alternatives.

21Feb07 policy-background
 Details, machine examples updated.

batch-scripts Compaq, MCR, ILX examples replaced.
differences Compaq, MCR, ILX examples replaced.
job-steps Compaq, MCR, ILX examples replaced.

22Aug06 run-alternatives
 Tool and job-node availability explained.

submit White references removed.

12Jun06 differences MPIRUN, LOADL details added.
plan BG/L MPIRUN constraints noted.
psub-crucial No PALTER support for -lt noted.
psub-parallel Option -g on AIX only.
monitor SQUEUE replaces LLQ under AIX.

07Mar06 bank-policy Batch, interactive banks merged.
shares-policy PSTAT now reports AGUs.
batch-scripts Job ID now in LCRM e-mail.
lrmmgr Fewer configurable job features,

 running jobs not affected by changes.
psub-crucial -tM now per CPU, includes idle time.
psub-parallel Warns to use parallel file sys only,

 -g gets added BG/L role.
monitor PSTAT -f details revised.
palter Option -tM now per CPU.

EZJOBCONTROL - 54

19Jan06 plan Environment variable issues noted.
psub-helpful -x option for env vars added.
environment-variables

 New section summarizes env var roles.
index New keyword for new section.

20Sep05 differences White/views case added.
plan Two SCF domains noted.
submit Two SCF domains noted (for PSUB).
monitor Two SCF domains noted (for PSTAT).
job-problems Wrong-domain problem added (SCF).

29Aug05 introduction Accounts gone in LCRM ver. 6.13.
plan UV, UP also have large memory pages.
psub-helpful -c limits only machines now,

 -pool added to limit node sets,
 -prj replaces -a (accounts defunct).

psub-examples Several updated, -pool added.
monitor Project replaces account in PSTAT output.
palter Constraint (-c), -pool alterable.
job-problems ENVIRONMENT case added.

04Apr05 phstat New section on scheduling info tool.
submit Script now goes to LCRM control host.
psub-parallel New BG/L and RDMA options added.
monitor PSTAT -D option added.
index New keyword for new section.

 entire LCRM manual title changed.

19Jan05 plan Large-memory page constraint noted.

11Nov04 introduction SLURM role clarified.
policy-background

 Details on load-balance scheduling.
plan SINFO (CHAOS) features added.
index SINFO keyword added.

 entire LCRM stressed over DPCS.

12Aug04 monitor SQUEUE job states cross referenced.

14Jul04 plim Report details updated.
psub-helpful -np now CPUs/node.
monitor PCSUSAGE becomes LRMUSAGE.

19May04 monitor SQUEUE role elaborated,
 cross reference added for details.

23Mar04 run-alternatives
 SRUN's role elaborated.

submit SRUN's role elaborated.
psub-helpful SRUN's extra constraints noted.

11Nov03 psub-parallel New -ln syntax and role explained.
psub-helpful -c details changed, -v added.
psub-examples Examples of new -ln added.
job-problems DELAYED status explained.
lrmmgr PCSMGR becomes LRMMGR everywhere.
index New LRMMGR keyword added.

EZJOBCONTROL - 55

29Oct03 run-alternatives
 SRUN for "local batch" added.

submit SRUN under Linux/CHAOS noted.
monitor SQUEUE compared with SPJSTAT.

26Aug03 introduction Cross ref to SLURM manual added.

27May03 introduction DPCS officially becomes LCRM.
differences How to distinguish OCF from SCF.
pcsmgr Also known as LRMMGR now.

15Jan03 dpcs-policy ILX replaces LX.
bank-policy Short production comments deleted.
plan All DCE and short prod. comments deleted.
psub-helpful Standby clarified, -[no]DFS deleted.
psub-misleading

 Option -sp deleted.
psub-examples All DCE/DFS comments deleted.

03Oct02 psub-helpful New role for -c forest.

05Aug02 batch-scripts IBM /var/tmp subdirectory noted.
differences IBM /var/tmp subdirectory noted.

15Apr02 plan BRLIM and web site added.
pshare Two new options added.
psub-helpful -standby option added.
psub-examples Expanded, clarified cases.
palter -[no]standby option added.
job-problems Limits discussion expanded.
index New keyword added for BRLIM.

17Sep01 batch-scripts Script names now up to 15 char.
plan PLIM, PCSMGR details updated.
psub PSUB can now expedite jobs.
psub-helpful Default constraints role noted.
psub-parallel Option -nettype added.
psub-misleading

 Options -lM, -p redefined.
psub-examples Parallel job case added.
job-problems Warning on role of -A option.

13Aug01 phist PHIST utility explained.

18Jun01 batch-scripts TMPDIR assigned on OCF.
plan PCSMGR details expanded.
psub-helpful DFS toggle default changes.
pstat Globus monitoring site noted.

07May01 batch-scripts Role of /nfs/tmp dirs clarified.

13Mar01 psub-helpful More DFS details cited.
psub-examples More DFS details cited.
differences IBM/POE env. var. roles noted.
introduction Cross ref to Bank manual added.

08Jan01 shares-policy Ratio term in algorithm noted.
batch-scripts PCS_TMPDIR role explained.
psub-parallel Nonzero -ln needed on TC2K.
psub-misleading

EZJOBCONTROL - 56

 Former -p option disabled.
palter Cross ref to privileged options.
prm E-mail alert added.
pstat SPJSTAT role explained.

24Oct00 psub-helpful Role of -noDFS clarified.

14Jul00 submit Cross ref to LC GLOBUS guide added.

14Jun00 create-script Percent char in name disallowed.
submit GLOBUS role noted.
psub-parallel New section, more options.
psub-helpful DFS toggle option added.
index New keyword for new section.

11May00 pstat PCSUSAGE role explained.

01Mar00 entire CRAY tools and examples deleted.

12Jan00 psub-helpful Nonpreemption -np option noted.

22Nov99 batch-scripts Output directory advice revised.
create-script Output directory advice revised.
make-directories

 Output directory advice revised.
check-log Output directory advice revised.
job-problems Output directory advice revised.

13Oct99 pstat -f report expanded, altered.
psub-helpful Wall-clock limit -tW added.
batch-scripts Command echoing clarified.

11Aug99 run-alternatives
 Gang scheduler alternative cited.

policy-background
 Gang scheduler guide linked in.

palter More constraints on time-limit changes.
prm Two more options added.

26Apr99 pstat New -f report features.

06Nov98 psub-examples DFS/DCE interaction noted.

02Sep98 entire Links to DPCS Manual revalidated.

06Jul98 shares-policy New section on fair-share policy.
dpcs-policy Revised, clarified, expanded.
bt BT, RDBSEE now obsolete.
pshare More details; on SCF too.
constraint-summary

 Now reflects fair-share sched.
psub Option syntax clarified.
pstat Technical details updated.
prm History log deletions too.
job-problems Fair-share, checkpoint effect noted.

18Mar98 who DOCGUIDE cross ref. added.
dpcs-policy Fair-share role noted.
plan Many changes to reflect

 fair-share scheduling on LC's
EZJOBCONTROL - 57

 open machines (only).
pshare New section added.
job-problems Fair-share role noted.
index New keyword added.

02Feb98 who SCF help e-mail added.
run-alternatives

 Faulty word corrected.
batch-scripts Scripts copied when submitted.

 Four allowed shells listed.
 Common -ro directory problem.
 Storage examples corrected.

job-chart Directories added to chart.
make-directories

 New keyword; directories emphasized.
psub-crucial -b option clarified.
monitor -T, -M options added.
job-problems Missing dirs problem added.
index New keyword added.

03Nov97 monitor -m added for wrong-host status.

16Oct97 scope Cross ref to DPCS manual added.
introduction Cross ref to DPCS manual added.
monitor Cross ref to DPCS manual added.
policy-background

 Cross ref to DPCS manual added.
run-alternatives

 30-min limit clarified.
batch-scripts Echo of PSUB_JOBID added.
create-script Echo of PSUB_JOBID added.
psub-helpful Multiple constraint warning added.

26Aug97 entire Extensive updates, revisions throughout.

23Apr97 entire First edition of LC EZJOBCONTROL manual.

TRG (29Aug07)

EZJOBCONTROL - 58

UCRL-WEB-200124
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (29Aug07) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

EZJOBCONTROL - 59

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	Alternatives for Running Programs
	Job-Scheduling Policy
	Policy Background
	How Banks Affect Job Scheduling
	How Shares Affect Job Scheduling

	Annotated Typical Batch Script
	Between-Machine Script Differences
	Running a Batch (LCRM) Job
	Overview Chart
	Step 1: Create Your Script
	Step 2: Store Files, Make Directories
	Step 3: Plan Your Job Constraints
	PLIM, LRMMGR, BRLIM, and SINFO
	PHSTAT (Production Host Status)
	BAC
	BT and RDBSEE (Replaced)
	PHIST
	PSHARE
	Constraint Summary

	Step 4: Submit Your Job
	Crucial PSUB Options
	Helpful PSUB Options
	Parallel PSUB Options
	Misleading PSUB Options
	PSUB Examples
	Environment Variables and Job Submittal

	Step 5a: Monitor Your Job
	Step 5b: Alter Job Features
	Step 5c: Delete Problem Jobs
	Step 6: Check Your Log File

	When Things Go Wrong
	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

